
Improving Source Code Navigation with Patchworks

Austin Z. Henley
Department of Computer Science

University of Memphis
Memphis, Tennessee 38152-3240

azhenley@memphis.edu

I. INTRODUCTION

Programmers spend a considerable amount of time navi-
gating among many code fragments that may be spread across
hundreds or even thousands of files. For example, one study
found that programmers spent 35% of their time navigating [5].
Another study showed that 50% of programmers’ time was
spent foraging for information [7]. My work aims to increase
programmer productivity through the design of new code
editors and tools to speed up source code navigation.

There are many reasons why programmers spend so much
time navigating. One possible reason is that they are seeking
to identify a relatively small set of task-relevant code within
the entire code base [5]. Moreover, it has been shown that
programmers may spend considerable time inspecting irrele-
vant code [5]. Another reason programmers navigate so much
is that they repeatedly visit code within this set of code. For
example, one study found that the four most recently visited
methods accounted for 69% of interclass navigations [6].

Currently, file-based editors, such as Eclipse, are the most
popular paradigm, and they may be contributing to the prob-
lems associated with code navigation. They present the code
by files and allow a programmer to scroll within a file or switch
tabs to work on other files. Unfortunately, a programmer’s
working set is likely to be scattered between and within
multiple code files, causing him or her to spend a lot of time
scrolling and switching tabs. For example, if a programmer is
working on a method at the top of a file and the bottom of a file,
he or she may have to navigate back and forth, disregarding
any code in between. This gets even more complicated if the
programmer must frequently alternate tabs to view other files
but still scroll to other fragments. One solution would be to
place code side by side, as most editors allow, but programmers
don’t seem to use this feature [1], [5].

Researchers have sought to overcome the limitations of
file-based editors with an alternative paradigm of code editors.
These canvas-based editors, such as Code Bubbles [1] and
Code Canvas [3], allow programmers to work with code
fragments, such as methods, and arrange them on a 2D canvas.
They enable the programmer to view only the relevant code
rather than entire files and provide an easy way to juxtapose
many code fragments.

Although these canvas-based editors may address some
problems of file-based editors, they may also introduce new
ones. A 2D space is large and may cause programmers to
spend time trying to orient themselves, or the canvas may
become very clutter after working for some time. This may
lead to programmers investing effort in managing their code

Patch-grid view 

Ribbon view 

A 

B 

Fig. 1. The Patchworks editor, including (A) the patch-grid view and (B)
the ribbon view.

fragments; however, window management activities have been
shown to be complex and time consuming [8].

To overcome the limitations of file-based and canvas-
based editors, my work proposes a new tool concept known
as Patchworks [4]. In particular, Patchworks aims to allow
programmers to conveniently juxtapose code, to efficiently
navigate recently visited code fragments, to significantly re-
duce scrolling, and to reduce the time spent arranging code.

II. TOOL CONCEPT: PATCHWORKS

Fig. 1 shows the Patchworks prototype. The environment
has six patches visible, which form the patch-grid, as shown
in Fig. 1A. Each patch is an editor that can contain a code
fragment in the form of a method, class, or file. To open
a code fragment, the programmer drags the element from
the package explorer to the patch. Fragments may be moved
between patches by dragging the name above the given patch
to the destination patch. If there is an existing fragment in the
destination patch, the contents of the patches are swapped.

There exists a virtually infinite number of patches off-
screen, to the left and right, on what is known as the ribbon.



The visible grid can be shifted left or right using a keyboard
shortcut or menu item. These actions are supplemented with
animations to convey the act of moving along the ribbon. Also,
the programmer can zoom out using the ribbon view, as shown
in Fig. 1B.

Two key design decisions were to make the grid of patches
fixed and to make the ribbon extend in one dimension. In
contrast to file-based editors, the fixed grid makes juxtaposition
always enabled, and unlike canvas-based editors, it reduces
tinkering with the interface and restricts the ways in which
programmers can arrange their code. Programmers need not
cleanup or organize the ribbon, they just need to shift the
ribbon, thus taking the patches out of sight but saving time on
cleanup and keeping them intact in case they are ever needed
again. The ribbon is one dimensional so that when seeking a
code fragment, it is either to the left or right, unlike canvas-
based editors that use a large 2D canvas where a programmer
has more opportunity to navigate in the wrong direction.

III. RESULTS OF PRELIMINARY EVALUATIONS

I first evaluated Patchworks with a small user study involv-
ing 15 participants [4]. The study compared Patchworks with
Eclipse, a representative file-based editor, and Code Bubbles,
a representative canvas-based editor. The participants opened
and arranged a set of related code fragments from a large
open source project, and I then asked them to navigate to
specific methods, while timing them. The results showed that
participants using Patchworks navigated significantly faster
than those using Eclipse, spent significantly less time arranging
code than those using Code Bubbles, and made significantly
fewer navigation mistakes than those using either Eclipse or
Code Bubbles.

As a second evaluation, I performed a simulation study to
better understand how programmers should use the ribbon to
arrange their code as they work on a development task. I did
this by building a simulator, given navigation data as input,
that evaluates different strategies of patch-arranging using
the keystroke-level model. The simulations showed that there
was no significant difference between different patch-arranging
strategies. Additionally, Patchworks significantly outperformed
Eclipse, regardless of the strategy used. These results suggest
that programmers can use Patchworks in a number of different
ways while still benefiting from the ribbon.

IV. FUTURE WORK

I would like to get feedback from the consortium on what
direction my research with Patchworks should go next. In
particular, I am considering two paths.

One path is to extend an existing IDE, such as Eclipse,
with Patchworks and integrate existing features, such as the
debugger. Doing so will enable me to further study and eval-
uate the design in a realistic environment. Furthermore, since
Eclipse is a tool commonly used by professional programmers
and provides them access to their usual features and plugins,
it will enhance the ecological validity. However, this route
has a large initial investment of time to implement the tool
(I estimate 9 months) during which I may not be producing
publishable results. Moreover, Eclipse is a changing platform
which may lead to considerable effort to maintain the plugin.

Ideally, I would let programmers download the tool and use
it for their own projects for an extended period of time, but
getting participants to do so would be difficult. Alternatively,
running a lab study with the tool could provide valuable results
but will detract from the realism that this feature-complete tool
was built for.

The other path I am considering is to build a more novel
tool that is more convenient to collect data and explore the
design, but is less like a professional programming environ-
ment. For example, building a web IDE with basic editing
capabilities and a testing environment could be completed
within a month using open source frameworks and libraries.
This approach makes it easy to distribute and collect data by
placing it on the web and collecting data from many users. To
attract participants, the IDE could be marketed as a learning
environment for undergraduate students that are interested in
learning a new programming language (e.g., Ruby on Rails)
that is not typically taught in formal classes. Although not as
realistic of a study, it should provide a wealth of usage data
and feedback without a huge investment to develop the tool.

There are a number of other questions I would like to
look into, regardless of which path I pursue to implement
the tool. Since the programmers I have observed use the
ribbon as a timeline, it could be beneficial to annotate the
ribbon with timestamps and provide a way to jump back to
specific times. While Patchworks has been designed for navi-
gating recently visited code, it could be interesting to provide
features for exploring code. For example, other researchers
have investigated the impact of sharing navigation data [2],
which could lend itself to the ribbon concept by showing team
member’s ribbons in the ribbon view. Moreover, integrating a
recommender system based on information foraging theory [7]
could enable programmers to quickly navigate recently visited
code while also finding relevant code that he or she had not yet
explored. Investigating these options with Patchworks could
provide insight on how software development tools can be
enhanced to improve code navigation.

REFERENCES

[1] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles: A
working set-based interface for code understanding and maintenance,”
in Proc. CHI, 2010, pp. 2503–2512.

[2] R. DeLine, M. Czerwinski, and G. Robertson, “Easing program com-
prehension by sharing navigation data,” in Proc. VL/HCC, 2005, pp.
241–248.

[3] R. DeLine and K. Rowan, “Code Canvas: Zooming towards better
development environments,” in Proc. ICSE, 2010, pp. 207–210.

[4] A. Z. Henley and S. D. Fleming, “The Patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proc. CHI, 2014, to appear.

[5] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented IDEs: A detailed study of corrective and perfective
maintenance tasks,” in Proc. ICSE, 2005, pp. 126–135.

[6] C. Parnin and C. Gorg, “Building usage contexts during program
comprehension,” in Proc. 14th IEEE Int’l Conf. Program Comprehension
(ICPC ’06), 2006, pp. 13–22.

[7] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proc. CHI, 2013, pp. 3063–3072.

[8] M. D. Plumlee and C. Ware, “Zooming versus multiple window inter-
faces: Cognitive costs of visual comparisons,” ACM Trans. Comput.-
Hum. Interact., vol. 13, no. 2, pp. 179–209, 2006.


