
Designing Affordances for Navigating
Information Spaces in Code Editors

Austin Z. Henley
Department of Computer Science

University of Memphis
Memphis, Tennessee 38152-3240

azhenley@memphis.edu

I. INTRODUCTION

Navigating information spaces is a fundamental yet chal-
lenging task for software developers. For example, one study
found that programmers spend 35% of their time on the
mechanics of navigating [7]. In another study, programmers
spent 38–71% of their time foraging for information during
debugging tasks [9]. This is further complicated by pro-
grammers’ rapidly changing information goals [9] and mental
models of the information as they navigate [6].

A potential reason for this difficulty is because there are
so many information spaces in code editors. Not only do
programmers want to navigate code, but they may also want
to navigate historical code, analysis tool output, previous
program outputs, code review comments, bug reports, etc.
Although these information spaces are often supported in code
editors, they usually have distinct and disjoint affordances for
navigating them.

The hypothesis of my thesis is that effective development
tools should support multiple spaces. For example, a program-
mer may want to view a previous version of the code to
use as a reference as they are modifying the current version.
Currently, code editors treat these two information spaces dif-
ferently by providing inconsistent affordances, thus requiring
even more effort for a programmer to seek information. An-
other example is viewing analysis tool output while performing
code reviews. To do this currently, a programmer would have
to leave the code editor and find a log of the analysis output or
even worse, check out the version of code being reviewed from
version control and rerun the analyzers. By supporting multiple
information spaces, tools could drastically reduce time spent
navigating, reduce cognitive load, and even reduce the number
of bugs introduced.

My goal is to develop a unified set of design principles for
affordances to support navigating multiple information spaces
in code editors efficiently. To date, I have investigated two
information spaces: recently visited source code and recently
modified source code. My next step is to explore information
spaces relevant to code reviews. Researching these various
information spaces should allow me to extrapolate generalized
design principles that cover many information spaces.

Fig. 1. The Patchworks code editor for Java. The editor consists of a fixed
grid of patches that can contain code fragments of various granularities (file,
class, method). Off-screen patches can be navigated to by shifting the patch
strip either to the left or right.

II. AFFORDANCES FOR NAVIGATING CODE

As a first step, I investigated tools for code navigation.
This is the most commonly supported information space in
code editors. Popular code editors, such as Eclipse and Visual
Studio, already provide many navigation features such as Open
Declaration, Find References, and text search. Additionally,
researchers have proposed extensions that further support code
navigation (e.g., Code Bubbles [1] and Stacksplorer [5]) while
others have studied the information needs of programmers
while using existing navigation features (e.g., [7], [8], [9]).

We developed an experimental code editor design, Patch-
works [3], for navigating recently visited code patches. Fig. 1
shows the initial implementation for Java code. A key feature
of the design is to divide the screen into patches of fixed
size and position, which can contain code fragments. This has
the goal of reducing time spent managing tabs. When these
patches are full, you can shift to the left or right, revealing
additional patches on a virtually never-ending patch strip.

After conducting several studies, we found that using Patch-
works had a number of benefits. Our initial study compared
participants using Patchworks, Code Bubbles, and Eclipse
to perform sequences of navigations [3]. Participants using
Patchworks navigated faster, spent less time arranging their
open code fragments, and made fewer navigation mistakes than
other participants. Our second evaluation found that regardless
of arranging strategy, Patchworks resulted in more efficient
navigations [2]. For a third evaluation, we asked professional
programmers to use Patchworks and a tab-based editor during
debugging tasks and again found that they had significantly
more efficient navigations.

978-1-5090-0252-8/16/$31.00 c©2016 IEEE

Fig. 2. The Yestercode extension to the LabVIEW IDE. Yestercode provides
an additional view that allows the user to navigate the current VI’s version
history and that displays the code of the selected older version with visual
cues that annotate the differences with the current version.

Based on the findings of these studies, we proposed 5
design principles to further improve code editor designs.
These principles are: facilitating efficient patch juxtaposition,
enabling efficient toggling between single-patch and multi-
patch displays, providing informative thumbnails/labels of
open patches, enabling efficient closing of open patches, and
applying these principles to all types of open patches (not
just code). By comparing and contrasting a variety of editor
designs, we were able to discover improvements to both
traditional tab-based editors (e.g., Visual Studio) as well as
more experimental editors (e.g., Patchworks).

III. AFFORDANCES FOR NAVIGATING HISTORICAL CODE

Another information space that has recently been recognized
as important is historical versions of code. For example, Yoon
and Myers found that programmers often want to revert por-
tions of their code to a previous version [11]. Researchers have
also been interested in how end user programmers navigate
among variations of programs (e.g., [10]).

As part of my exploration, we designed a tool, Yester-
code [4], that allows a programmer to navigate through recent
versions of code and compare it to the most recent version.
As shown in Fig. 2, the editor is split into two documents, the
current version of the code and a previous version. A slider
allows the programmer to quickly navigate through the history
of the code. This feature is designed so that programmers
can view previous versions without any upfront effort (e.g.,
committing changes to a version control system). Additionally,
it is built into the editor itself, so that the programmer can
continue editing the current version while also interacting with
the previous version.

In an evaluation of professional programmers using Yester-
code, we found several benefits. First, participants using
Yestercode introduced significantly fewer bugs than the control
participants. Second, Yestercode did not impact the time taken
to complete tasks. Third, Yestercode participants reported
significantly lower cognitive load while performing the tasks.

Based on these results, we developed 5 design principles
that Yestercode followed. The tool should transparently record
the version history without any explicit actions by the pro-
grammer to do so. It should also allow for juxtaposition of two

versions while enabling the programmer to efficiently navigate
the version history. Furthermore, the tool should annotate the
version differences with visual cues while also being tightly
integrated into the code editor, allowing actions such as copy-
and-pasting from a previous version.

IV. PROPOSED WORK

For the next piece of my dissertation, I will investigate the
combination of information spaces relevant to code reviewing.
In particular, I will explore how adding additional information,
such as analysis tool output, improves code reviewing.

To carry this work forward, I will be interning at Microsoft
Research. This will enable me to study the information needs
of professional programmers during code reviews. I’ll then
extend a code reviewing tool to better support their needs and
evaluate the design with a user study.

As a final effort of my work, I plan to take these sets of
design principles and form a generalized set that can be applied
to other information spaces. In the current state of the field,
tool developers have to rely on their intuition or just mimic
other systems, which may lead to unsuitable design decisions.
These principles will assist the designers of information nav-
igation tools by providing a coherent framework of heuristics
based on empirical evidence.

REFERENCES

[1] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles:
Rethinking the user interface paradigm of integrated development envi-
ronments,” in Proc. ICSE, 2010, pp. 455–464.

[2] A. Z. Henley, A. Singh, S. D. Fleming, and M. V. Luong, “Helping
programmers navigate code faster with patchworks: A simulation study,”
in 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), July 2014, pp. 77–80.

[3] A. Z. Henley and S. D. Fleming, “The patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’14), 2014, pp. 2511–2520.

[4] A. Z. Henley and S. D. Fleming, “Yestercode: Improving code-
change support in visual dataflow programming environments,” in 2016
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), 2016, to appear.

[5] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers,
“Stacksplorer: call graph navigation helps increasing code maintenance
efficiency,” in Proc. UIST, 2011, pp. 217–224.

[6] A. Kittur, A. M. Peters, A. Diriye, T. Telang, and M. R. Bove, “Costs
and benefits of structured information foraging,” in Proc. CHI, 2013,
pp. 2989–2998.

[7] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented IDEs: A detailed study of corrective and perfective
maintenance tasks,” in Proc. ICSE, 2005, pp. 126–135.

[8] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE
’16). New York, NY, USA: ACM, 2016.

[9] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13), 2013, pp. 3063–3072.

[10] S. Srinivasa Ragavan, S. K. Kuttal, C. Hill, A. Sarma, D. Piorkowski,
and M. Burnett, “Foraging among an overabundance of similar variants,”
in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (CHI ’16). ACM, 2016, pp. 3509–3521.

[11] Y. S. Yoon and B. A. Myers, “A longitudinal study of programmers’
backtracking,” in 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), July 2014, pp. 101–108.

