
Toward Principles for the Design of Navigation Affordances
in Code Editors: An Empirical Investigation

Austin Z. Henley, Scott D. Fleming, Maria V. Luong
Department of Computer Science

University of Memphis
Memphis, Tennessee, USA

{azhenley, Scott.Fleming, mluong}@memphis.edu

ABSTRACT
Design principles are a key tool for creators of interactive sys-
tems; however, a cohesive set of principles has yet to emerge
for the design of code editors. In this paper, we conducted a
between-subjects empirical study comparing the navigation be-
haviors of 32 professional LabVIEW programmers using two
different code-editor interfaces: the ubiquitous tabbed editor
and the experimental Patchworks editor. Our analysis focused
on how the programmers arranged and navigated among open
information patches (i.e., code modules and program output).
Key findings of our study included that Patchworks users made
significantly fewer click actions per navigation, juxtaposed
patches side by side significantly more, and exhibited signif-
icantly fewer navigation mistakes than tabbed-editor users.
Based on these findings and more, we propose five general
principles for the design of effective navigation affordances in
code editors.

ACM Classification Keywords
D.2.6 Software Engineering: Programming Environments;
H.5.m. Information Interfaces and Presentation (e.g., HCI):
Miscellaneous.

Author Keywords
Programming environments; navigation; design principles;
visual programming languages; user study.

INTRODUCTION
Design principles have proven to be a key tool for designers
of interactive systems. Principles help guide the design of
a system by providing a set of heuristics and best practices,
often based on empirical evidence. Moreover, such principles
serve to inspire new design decisions and to facilitate the com-
parison of competing designs. Without principles, designers
are left to rely on intuition, increasing the risk of wasting time
and effort relearning which designs are effective and of repeat-
ing past mistakes. Design principles have been proposed to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHI 2017, May 6–11, 2017, Denver, CO, USA.
© 2017 ACM ISBN 978-1-4503-4655-9/17/05...$15.00.
http://dx.doi.org/10.1145/3025453.3025645

help designers in a variety of different contexts, including the
design of mixed-initiative user interfaces [17], of web pages
that support information foraging [47], of affordances for de-
bugging machine-learning systems [28], of affordances to help
end-user programmers learn enough to overcome barriers [19],
and of games for computer science education [30].

One actively studied domain of interactive systems that has yet
to benefit from a cohesive set of design principles is code edi-
tors. Numerous code-editor designs have been proposed over
the years. Early designs emphasized a windowed paradigm
in which each open code file was displayed in a separate
window (e.g., Visual C++ 6.0). More recent development
environments have favored tabbed editor interfaces (e.g., as
in Eclipse and Visual Studio). Dissatisfied with the status
quo, researchers have also proposed more radical designs. For
example, canvas-based editors enable programmers to arrange
open code fragments on a large 2D canvas (e.g., as in Self [46],
Jasper [6], Code Canvas [12], and Code Bubbles [4]). Despite
all this design exploration, a set of effective design principles
for code editors has yet to be codified.

In this work, we aim to create a cohesive set of design princi-
ples targeting navigation affordances for code editors. Code
navigation is a key concern in code-editor design. Studies have
shown that programming tasks typically involve large amounts
of information seeking. For example, one study found that
programmers spent 50% of their time foraging for information
during debugging tasks [40]. As a consequence of all this
information seeking, navigation takes up a significant portion
of the time programmers spend on tasks. One study found
that programmers spent 35% of their time on the mechanics
of navigation alone [23], and another found that programmers
averaged over 5 navigations per minute during programming
tasks [14]. Thus, navigation affordances can have a substantial
impact on a programmer’s time and effort on task.

Toward our goal of design principles, we have been exploring
Patchworks [15], an experimental code-editor design. In con-
trast to tabbed editors, Patchworks is based on the idiom of
a sliding grid strip of code fragments. In a preliminary eval-
uation [15], Patchworks users navigated significantly faster
and made fewer navigation mistakes than users of a tabbed
editor (Eclipse). A subsequent simulation study [16] also
showed that Patchworks can significantly increase the number

of highly efficient on-screen navigations (i.e., navigations to
code already visible on screen) that programmers make.

Although these preliminary evaluations of Patchworks showed
promise, they had key limitations. The participants were CS
graduate students, leaving the question of whether the results
will generalize to professional developers. Moreover, the ini-
tial evaluation involved artificial navigation tasks that enabled
precise recording of navigation times, but did not explore
more natural development activities, such as debugging. In
the second study, navigation logs of Java programmers were
used to simulate the experience of a Patchworks user; however,
Patchworks’ effect on navigation decisions was not tested.

In this paper, we present a new empirical study that both
addresses our goal of principles as well as overcomes the lim-
itations of prior Patchworks evaluations. In particular, we
performed an observational user study that compared the ubiq-
uitous tabbed editor design with the experimental Patchworks
design to inductively build a set of design principles. To
address ecological validity, participants in our new study con-
sisted of 32 professional programmers at a large software
company, and the tasks they performed were more-naturalistic
program-debugging tasks. The central goals of our study were

(1) to evaluate how well Patchworks achieves its goals,
(2) to investigate other navigation-related trends not specifi-

cally addressed by Patchworks, but relevant to the design
of code editors, and

(3) to create a set of design principles based on our findings.

As our subjects of study, we selected experts and tasks in a
visual dataflow programming language, LabVIEW [8]. Most
prior research on programmer navigation has studied textual
programming languages (especially Java). A key reason for
choosing a visual dataflow language was that we seek to cre-
ate a universal set of editor-design principles and to avoid
overfitting the principles to the idiosyncrasies of a particu-
lar programming language or paradigm. Additionally, this
choice afforded us the opportunity to compare the navigation
characteristics of visual language programmers to those of
textual-language programmers from prior research.

Based on this work, we make the following key contributions:

• Findings of the most ecologically valid evaluation of Patch-
works to date.
• Five empirically grounded principles for the design of navi-

gation affordances in code editors based on the findings.
• The first empirical comparison of navigation characteristics

of visual dataflow language (LabVIEW) programmers and
textual language (Java) programmers.
• An implementation of the Patchworks editor design for the

LabVIEW development environment.

BACKGROUND

Programmer Navigation
The literature on programmer navigation can help shed light on
the navigation affordances programmers will find effective. As
mentioned above, programmers spend a considerable portion
of their time on tasks navigating [14, 23]. One reason for this

Figure 1. LabVIEW block diagram (top) and front panel (bottom).

navigation is that programmers engage extensively in informa-
tion foraging to locate task-relevant code [23]. This process
typically involves traversing relationships between fragments
of code (e.g., following control-flow dependencies) [22]. Due
to the size and complexity of software projects, programmers
may spend considerable time inspecting irrelevant code [23,
39], or even “getting lost” in the code [10, 11].

One key pattern is that most navigations tend to revisit code the
programmer recently visited. For example, studies of predic-
tive models of programmer navigation have consistently found
that one of the strongest predictors of which code method
(i.e., subroutine) a programmer would click in next was how
recently he/she had visited the method (i.e., more recently
implies more likely) [10, 26, 29, 33, 38, 45]. Studies have also
found that between 82% [16, 45] and 95% [33] of programmer
navigations were to previously visited methods.

Recently, researchers have proposed novel interface designs to
support revisiting. Tools such as Mylyn [21], Jasper [6], Code
Bubbles [3, 4], Code Canvas [12], and Patchworks [15] en-
able programmers to collect and easily revisit code fragments.
Other tools, such as Blaze [27] and Stacksplorer [20], pro-
vide visualizations that enable programmers to traverse code
relationships. The designs of these tools range widely, and
in this paper, we aim to distill key principles to help tool de-
signers provide transformative navigation capabilities without
sacrificing the essential navigation needs of programmers.

Visual Dataflow Languages
Most prior work on programmer navigation has focused on
Java and Java-like programming languages, so we opted to
focus our study on visual dataflow languages to mitigate the
effects of Java’s idiosyncrasies on our findings and to shed
light on the navigation behaviors of visual dataflow program-
mers. Instead of textual source code, these languages are
characterized by programs being made up of boxes (functions)
and arrows (values), as illustrated at the top of Fig. 1. The
execution of the program follows the dataflow via the arrows.
Thus, visual dataflow languages have a radically different syn-
tax than Java-like textual languages while still providing many
of the same foundational features, such as modularity.

b"

a"

c"

Figure 2. The LabVIEW IDE. The command ribbon (a) and the project
explorer (b) were the same for all participants; however, the code editor
(c) varied (tabbed vs. Patchworks).

In this paper, we focus on LabVIEW, a commercial visual
dataflow programming environment that is one of the most
widely used visual programming languages to date [49]. In
LabVIEW, programs are composed of modules, called Virtual
Instruments (VIs). Fig. 1 (top) illustrates the code for a VI,
represented as a block diagram, that takes 3 inputs, performs
a multiplication in a loop, then outputs the result. In Lab-
VIEW, each block diagram is associated with a graphical user
interface, called a front panel, as shown at the bottom of Fig. 1.

CODE EDITORS COMPARED
In our study, we compared the navigation affordances of two
code-editor designs: the ubiquitous tabbed code editor and a
research design, the Patchworks code editor [15]. Both editors
were implemented within the LabVIEW integrated develop-
ment environment (IDE) depicted in Fig. 2. The LabVIEW
IDE provides features similar to those of other popular IDEs
(e.g., Eclipse and Visual Studio), including a project explorer
for opening VIs (Fig. 2b) as well as debugger and search tools
accessible via the command ribbon (Fig. 2a).

Borrowing from information foraging theory [41], we assume
a programmer’s task environment to have a “patchy” structure,
where a patch may be a code file, web page, or other interface
that the programmer reads or edits as a unit. In LabVIEW,
each VI is associated with two patches: its block diagram and
its front panel. The programmer navigates by moving his/her
attention from one patch to another.

All editors that we are aware of, including the two under study,
maintain a set of “open” patches that the programmer has
accessed (or opened). The tabbed and Patchworks editors
differ mainly in the affordances they provide for displaying,
organizing, and navigating among open VI patches, and we
detail those differences below.

Tabbed Code Editor
Tabbed code editors are based on an interface paradigm similar
to paper file folders, as shown in Fig. 3. Currently, they are
by far the most popular code-editor interface. Tabbed editors
default to a single-patch display in which the contents of
one patch fill most of the editor’s available space (Fig. 3c).
Each open patch has a labeled “tab”, like a paper file folder
(Fig. 3a). The programmer may navigate among open patches
by clicking on the tabs. If too many patches are open, some
tabs are elided and made available via a drop-down menu
(Fig. 3b). The programmer may reorder tabs by dragging and

c"

a" b"

Figure 3. The tabbed code editor. Tabs (a) could be used to switch among
open patches. If too many patches were open, some of the tabs were
elided (b). This single-patch display (c) filled the rest of the pane with
one VI patch.

Figure 4. Tabbed editor manipulated into a multi-patch display, allow-
ing two VI patches to be placed side by side.

dropping, and may close a patch by clicking a button on its
tab. The programmer may also manipulate a tabbed editor into
a multi-patch display (in which two patches are placed side by
side) by splitting the editor pane into two panes, and dragging
and dropping tabs between the panes, as illustrated in Fig. 4.

Patchworks Code Editor
The Patchworks code editor is an experimental design that
aims to ease navigation among open patches. In this work, we
focus on four key subgoals of the design:
• Reduce the cost of navigation (i.e., clicks per navigation).
• Facilitate the juxtaposition of patches (i.e., placing patches

side by side on screen).
• Reduce navigation mistakes (i.e., accidentally navigating to

the wrong patch).
• Enable efficient toggling between multi-patch and single-

patch views.

As illustrated in Fig. 5, the Patchworks editor’s main display
consists of a patch grid with four fixed patch cells. Each patch
cell may contain a VI block diagram or front panel. The choice
of four patch cells was based on the typical size of a VI and the
study-monitor size. (In contrast, the prior Patchworks editor

…" …"

a" b"

c"

d"

Figure 5. The Patchworks code editor. This multi-patch display divides
the editor pane into a patch grid with four patch cells. Each patch cell
may contain a block diagram (a) or front panel (c) for a VI, or it may
be empty (b). The displayed patch grid is actually a view into a larger
patch strip (d), and the programmer can navigate by sliding the view left
or right along the patch strip.

b"
a"

Figure 6. Patchworks’ bird’s eye view (a) enables the user to zoom out,
and survey and organize his/her open patches. It represents each patch
with a thumbnail (b).

for Java [15] had six patch cells.) This multi-patch display
aims to facilitate juxtaposition of patches by emphasizing
the presentation of more than one patch on screen at a time,
while the fixed grid layout aims to reduce tedious window
management. Patches can be efficiently moved and swapped
between cells via dragging and dropping.

To enable navigation beyond the patches visible on screen, the
patch grid is actually a view into a larger patch strip, illus-
trated by Fig. 5d. The programmer navigates among patches
by sliding the view left or right along the patch strip using a
keyboard shortcut or horizontal scrollbar. This 1-dimensional
patch strip aims to reduce navigation mistakes by simplifying
the space of possible navigation actions (slide left or right) and
to facilitate efficient visual scanning of open patches. Addi-
tionally, the Patchworks editor enables toggling to a bird’s eye
view of the patch strip that shows a thumbnail of each open
patch, as illustrated in Fig. 6. The programmer can rearrange
patches from the bird’s eye view via the same dragging and

dropping interactions as in the patch-grid view, and can zoom
back into the patch-grid view by clicking on a selected patch.

Patchworks also enables toggling a patch to a “blowup” view
that takes up the entire editor space. To toggle into or out of
the blowup view, the programmer double-clicks the selected
patch’s title label. In this way, Patchworks aims to enable effi-
cient switching between multi-patch and single-patch display.

METHOD
To address our research goals, we conducted an observational
laboratory study of professional LabVIEW programmers en-
gaged in debugging. We divided the participants into two
treatments, each using a different editor. The Tabs Group
used an editor based on the ubiquitous tabbed interface to
perform debugging tasks, whereas the Patchworks Group used
the Patchworks editor.

Participants
Our participants consisted of 32 professional programmers
from a large technology company (27 males, 5 females). All
held bachelor’s degrees in engineering, and five also held
master’s degrees. On average, they had 1.6 years of profes-
sional programming experience (SD = 1.0) and 2.1 years of
LabVIEW experience (SD = 1.8). They all reported using
LabVIEW on a daily basis for their jobs.

Code Base and Tasks
For our study, the participants worked on a calculator appli-
cation, illustrated in Fig. 1 (bottom), written in LabVIEW,
consisting of 34 VIs. The application was based on a pub-
licly available sample application [7] written in an old version
of LabVIEW, and we ported this sample application to the
current version of LabVIEW. We also seeded the application
with five bugs that we actually encountered during the porting
process.

As tasks, each participant worked on fixing the five seeded
bugs. The tasks were ordered from least to most difficult.
For example, Task 1 required understanding mainly one VI,
whereas Task 4 required understanding interactions between
several. All participants did the tasks in the same order, and
had to complete the current task before beginning the next.

Procedure
Prior to their study sessions, participants were randomly as-
signed to the Tabs and Patchworks Treatment Groups such
that there were 16 participants in each group. Each session
took roughly 1 hour. First, the participant filled out a back-
ground questionnaire. Next, the participant viewed a short
presentation on the code base and the editor they would be
using (tabbed or Patchworks, depending on treatment). The
participant then practiced with the editor and code base for
10 minutes, answering questions about the source code. The
participant then worked for 40 minutes on the debugging tasks.
To better understand where participants placed their attention,
we asked them to “think aloud” as they worked. At the end
of the session, the participants took part in a semi-structured
interview in which they discussed any issues they had and
their thoughts on the editor. We recorded screen-capture video
and audio of participant utterances throughout the session.

Qualitative Analysis
As our main analysis, we used qualitative coding methods to
identify where the participants navigated—that is, on which
patches they placed their attention—throughout each of their
sessions. Following the coding rules from a prior study [16],
we coded each time (accurate to a second) a participant moved
his/her attention from one patch to another. Additionally, we
coded navigation mistakes based on participants’ utterances
after a navigation, indicating if a navigation did not result in
their intended destination.

To ensure the reliability of our analysis results, we applied a
standard inter-rater reliability method in which two researchers
independently code the same 20% of the data, and must
achieve at least 80% agreement using the Jaccard index. When
the researchers have reached this level of agreement, they may
split up the remaining data to be coded individually. The two
coders for our study achieved 88.9% agreement for 20% of
the video data, and individually coded the remaining data.

RESULTS
To address our research goals, we collected and analyzed
over 21 hours of video of our 32 professional programmers
engaged in debugging, half using a tabbed editor and half
using Patchworks. On average, participants completed 2.63 of
the 5 tasks (SD = 0.71), with each completed task taking an
average of 9.55 minutes (SD = 7.24). Although there was no
significant difference in the rate of success or overall task time
between the treatment groups, they did exhibit key differences
with respect to navigation—the focus of our investigation.

In this section, we first report the results of our comparative
evaluation of Patchworks’ navigation affordances. Next, we
describe empirical trends across our treatments that are rele-
vant to the design of navigation affordances and that are not
specifically addressed by Patchworks. We close the section
with a comparison of our LabVIEW programmers’ navigation
traits with those of Java programmers in prior studies.

Patchworks Evaluation Results
Using our analysis data, we evaluated the extent to which
Patchworks met each of its four main design goals.

Reducing Navigation Cost
To evaluate the goal of reducing navigation cost, we randomly
sampled 10 navigations from each participant and counted the
number of click actions the participant performed in making
that navigation. Such actions mainly included tab clicks in the
tabbed editor and patch-strip shift actions in Patchworks.

As Fig. 7 shows, navigations in Patchworks were considerably
more efficient, requiring fewer clicks, than navigations in the
tabbed editor. On average, Patchworks participants made less
than half (40%) of the click actions that Tabs participants made
per navigation. This difference was statistically significant
(Mann–Whitney: U = 22.5, Z = 3.96, p < 0.0001).

Facilitating Patch Juxtaposition
Consistent with Patchworks’ goal of facilitating juxtaposition,
Patchworks participants juxtaposed patches more than Tabs
participants. Every Patchworks participant juxtaposed patches

0%

20%

40%

60%

80%

100%

Tabs Patchworks

P
e

rc
e

n
ta

ge
 o

f
o

n
-

sc
re

e
n

 n
a

vi
g

a
tio

ns

0

0.5

1

1.5

Tabs Patchworks

M
e

a
n

 c
lic

ks
 p

e
r

n
a

vi
g

a
tio

n

Figure 7. Patchworks participants performed significantly fewer click
actions per navigation than did Tabs participants (smaller bars are bet-
ter). Whiskers denote standard error.

0%

20%

40%

60%

80%

100%

Tabs Patchworks

P
e

rc
e

n
ta

ge
 o

f
o

n
-

sc
re

e
n

 n
a

vi
g

a
tio

ns

0

0.5

1

1.5

Tabs Patchworks

M
e

a
n

 c
lic

ks
 p

e
r

n
a

vi
g

a
tio

n

Figure 8. Patchworks participants made significantly more on-screen
navigations than did Tabs participants. Whiskers denote standard error.

during their tasks. In contrast, only 10 of the Tabs participants
(63%) juxtaposed patches. This difference was statistically
significant (Fisher’s exact test: p < 0.01).

Patchworks participants also rearranged their juxtaposed
patches more than Tabs participants. In fact, only one Tabs
participant, P15, rearranged his juxtaposed patches. In con-
trast, 11 of the 16 Patchworks participants had at least one
episode of rearranging patches on the patch strip. Of these 11
participants, they dragged and dropped a patch from one grid
cell to another an average of 4.9 times (SD = 3.6). Compar-
ing just the Tabs and Patchworks participants who juxtaposed
at all, significantly more of the Patchworks participants rear-
ranged their juxtaposed patches than did the Tabs participants
(Fisher’s exact test: p < 0.01).

Following from Patchworks participants’ greater tendency to
juxtapose patches, they also made significantly more on-screen
navigations than Tabs participants (Mann–Whitney: U = 29,
Z = 3.71, p < 0.0002). Fig. 8 illustrates this difference. On-
screen navigations are highly efficient because they require
moving only one’s eyes (no clicking). In one extreme case,
Patchworks Participant P13 made over 80% of his navigations
to patches already on screen.

The Patchworks participants’ high rate of on-screen naviga-
tions had a considerable influence on their lower average cost
of navigation; however, it was not the only contributor. Even
if on-screen navigations were excluded from our cost anal-
ysis, Patchworks participants still made significantly fewer
clicks per navigation (Tabs: M = 1.80, SD = 0.58; Patch-
works: M = 1.36, SD = 0.23; Mann–Whitney: U = 53.5,
Z = 2.79, p < 0.003).

Reducing Navigation Mistakes
Another reason that Patchworks participants made fewer clicks
per navigation was that they made fewer navigation mistakes.
Based on our qualitative analysis, no Patchworks participant
ever indicated mistakenly navigating to a patch other than the
one he/she intended. In contrast, Tabs participants made many

0

5

10

15

20

25

30

P31 P22 P27 P7 P21 P30 P12 P18 P20 P1 P8 P23 P11 P28 P15 P4

N
a

vi
g

a
tio

n
 m

is
ta

ke
s

Half of Tabs participants made

10 or more navigation mistakes

Figure 9. Tabs participants made numerous navigation mistakes in
which they clicked on a tab other than the one they intended. All Tabs
participants made at least one such mistake, and half of Tabs partici-
pants made 10 or more.

navigation mistakes in which they were seeking a particular
patch and clicked the wrong tab to get there. As Fig. 9 shows,
all Tabs participants made at least one navigation mistake, and
on average, Tabs participants made 11.75 mistakes per ses-
sion (SD = 7.28)—roughly one every 3 minutes. Because no
Patchworks participant indicated making a navigation mistake,
and every Tabs one did, the statistical difference between the
treatments was highly significant (Fisher’s exact test: p = 0).

Enabling Efficient Blowup View
To evaluate the goal of enabling efficient toggling between
single-patch and multi-patch displays, we counted uses of
Patchworks’ blowup-patch feature to see whether participants
used it consistently. We also checked whether the blowup view
tended to complement the multi-patch view (as opposed to
replacing it). In this evaluation, there was no comparison data,
as the tabbed editor lacked an analogous feature.

A strong majority of Patchworks participants made use of the
blowup view. All but three Patchworks participants toggled at
least once, and nearly one third of all Patchworks participants
blew up patches over 10 times. Moreover, the participants who
used the feature did so an average of 15.5 times (SD = 17.5)—
more than once for every 3 minutes.

For Patchworks participants, the blowup view complemented
the multi-patch grid well. On average, participants did not
stay in the blowup view very long during each use (M = 33.5
seconds, SD = 20.9), preferring to use it in combination with
the patch grid. As a result, all Patchworks participants, except
one, spent less than 50% of their sessions in the blowup view.

Trends across Treatments
In addition to evaluating Patchworks’ design goals, we
checked for three key trends in how programmers navigate and
manage open patches. None of these trends were specifically
addressed by Patchworks’ design goals; however, they all pose
relevant considerations in the design of navigation affordances
for code editors.

Rapid Patch Scanning
One trend we tested for was rapid scanning of patches. In
particular, we wanted to see if participants tended to make
their visits to patches short, and if they tended to make series
of short visits indicative of scanning patches.

Based on our navigation data, all participants, regardless of
treatment group, did a considerable amount of rapid scanning

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58

P
e

rc
e

n
ta

ge
 o

f
vi

si
ts

Maximum duration of visit (seconds)

Patchworks

Tabs

50% of visits

were ≤ 6 sec

Figure 10. Participants often visited patches for very short intervals,
which is consistent with quick scanning. In fact, half of visits lasted 6
seconds or less.

of patches. One key indicator of this behavior was that most
of the visits to patches that the participants made were quick.
As Fig. 10 shows, half of the visits that participants made to
patches lasted 6 seconds or less.

To see if participants were making these short navigations in
clusters, we applied DBSCAN [13], a density-based clustering
algorithm commonly applied to time-series data. We allowed
for up to 5 seconds between navigations and a minimum of 3
navigations to be clustered.

The DBSCAN results showed that every participant engaged
in quickly scanning across multiple patches. To illustrate,
Fig. 11 visualizes the DBSCAN results for Participant P17,
with his 14 clusters of quick navigations spread throughout
his session. Overall, 44% of all navigations that participants
made were part of a quick-navigation cluster. On average,
participants had 17.3 such clusters (SD = 8.6) during their
40-minute sessions. No participant had fewer than 4 clusters,
and one participant had 34.

Cleaning Up Open Patches
Another trend that we checked for was patch-cleanup
behavior—the tendency to let open patches accumulate and
then engage in bulk closing of the patches. To this end, we
logged each time a participant closed a patch, and to detect
bulk closures, we again used DBSCAN to identify clusters (10
seconds between closes, minimum of 3 closes per cluster).

Based on our data, nearly all participants engaged in cleanup,
closing open patches throughout their sessions. The Tabs
and Patchworks participants closed patches at similar rates:
Tabs Participants averaged 14 closes per session (SD = 6.8)
and Patchworks Participants averaged 16.1 (SD = 8.9). Our
DBSCAN results showed that 63% of closes were part of
clusters, and participants had an average of 3.4 clusters per
session (SD = 2.2). The average number of closes in a cluster
was 4.1 (SD = 1.8), which accounted for 69% of the open
patches on average (SD = 22).

Navigations to Program-Output Patches
A final trend we tested for was the extent to which program-
mers navigate to program-output patches. Our LabVIEW-
based editors differ from those of other popular IDEs in that
they present the output (i.e., front panel) of the program un-
der development in patches similar to the code patches. We
included navigations to these program-output patches in our

0 5 10 15 20 25 30 35 40

9 3 5 14 4 19 4 3 33 19 5 6 4

Elapsed time (minutes)

Figure 11. Navigation timeline for P17 with DBSCAN clusters highlighted and cluster size labeled.

Table 1. The textual-language programmer navigation data sets we compared with our visual dataflow language programmer data.

Data Set Participants Task Type Task Time Language Size of Code

[14] Fritz et al. FSE’14 5 professionals, 4 CS students, 3 CS faculty Feature modification 75 min Java 14–53k LOC
[16] Henley et al. VL/HCC’14 14 CS students Feature addition 120 min Java 3–17k LOC
[36] Piorkowski et al. CHI’12 11 professionals Debugging 70 min Java 97k LOC
[37] Piorkowski et al. ICSME’15 11 CS students Debugging 30 min Java 99k LOC

This Study 32 professionals (16 Tabs + 16 Patchworks) Debugging 40 min LabVIEW 34 VIs

navigation coding, and analyzed the frequency of those navi-
gations relative to the code ones.

Based on our data, all participants, regardless of treatment,
made a considerable number of navigations to program-output
patches. On average, Tabs Participants made 29.2% of their
navigations to program-output patches (SD = 7.5) and Patch-
works participants made 26.2% (SD = 7.9).

Visual Dataflow versus Textual Language Programmers
To compare the navigation behavior of textual language pro-
grammers and visual dataflow language programmers, we
compared our data with results reported by four prior studies
(i.e., [14, 16, 36, 37]). We focused our comparison on two
key navigations traits: (1) how much the programmers navi-
gated and (2) how much the programmers revisited patches.
In the prior studies, the patches among which programmers
navigated were Java methods. For our comparison analysis,
we operationalized patches as VI block diagrams, which are
analogous to methods. Table 1 describes each of the prior
textual-language studies.

As Figs. 12 and 13 show, the visual dataflow language pro-
grammers exhibited similar navigation traits to the textual lan-
guage programmers from prior studies. The rates of navigation
for our participants were squarely in the middle of the range
of navigation rates exhibited by textual language programmers
from the literature (Fig. 12). Furthermore, our visual dataflow
participants also revisited patches frequently—even more so
than prior textual language programmers (Fig. 13).

DISCUSSION
Implications for Design: Principles
Toward our goal of design principles for code editors, we built
upon our quantitative results with additional qualitative anal-
yses of our think-aloud data. In particular, we mapped from
quantitative data points to participant episodes, and examined
those episodes in detail to help explain and expand upon our
results. Informed by these quantitative and qualitative data,
we inductively propose five principles, summarized in Table 2.

The Juxtaposition Principle
The Juxtaposition Principle emphasizes enabling program-
mers to efficiently (re)arrange multiple patches side by side on

0%

20%

40%

60%

80%

100%

Piorkowski
ICSME'15

Piorkowski
CHI'12

Fritz
FSE'14

Henley
VL/HCC'14

Patchworks
Group

Tabs
Group

R
e

vi
si

t p
e

rc
e

n
ta

g
e

0

1

2

3

4

5

6

Piorkowski
CHI'12

Piorkowski
ICSME'15

Patchworks
Group

Tabs
Group

Henley
VL/HCC'14

Fritz
FSE'14

N
a

vi
g

a
tio

n
s

p
e

r
m

in
u

te

Figure 12. Our visual dataflow language programmers (light bars) nav-
igated at rates similar to prior textual language programmers (dark
bars). Whiskers denote standard error.

0%

20%

40%

60%

80%

100%

Piorkowski
ICSME'15

Piorkowski
CHI'12

Fritz
FSE'14

Henley
VL/HCC'14

Patchworks
Group

Tabs
Group

R
e

vi
si

t p
e

rc
e

n
ta

g
e

0

1

2

3

4

5

6

Piorkowski
CHI'12

Piorkowski
ICSME'15

Patchworks
Group

Tabs
Group

Henley
VL/HCC'14

Fritz
FSE'14

N
a

vi
g

a
tio

n
s

p
e

r
m

in
u

te

Figure 13. Like prior textual language programmers (dark bars), our
visual dataflow language programmers (light bars) revisited patches fre-
quently. Whiskers denote standard error.

Table 2. Candidate design principles for code editors.

Name Definition

Juxtaposition Principle Enable efficient (re)arranging of multiple open
patches side by side on screen at a time.

Signpost Principle Thumbnails/summaries/labels of open patches
must provide sufficient information to quickly
make effective navigation decisions.

Blowup Principle Enable efficient toggling of an open patch within
a multi-patch display to an enlarged, possibly
single-patch, display.

Cleanup Principle Enable efficient closing of open patches that are
not currently relevant and causing clutter.

Heterogeneity Principle Apply the above principles to all types of
frequently visited patches (not only code).

screen. Although both the Patchworks and tabbed editors sup-
port juxtaposing patches, the Patchworks editor better satisfies
the Juxtaposition Principle’s efficiency aspect. Patchworks’

fixed grid of patch cells meant that juxtaposing was simply
a matter of opening patches, each in its own cell. In con-
trast, the tabbed editor required the programmer to tediously
split, position, and resize windows. As our results show, every
Patchworks participant juxtaposed patches during their tasks,
whereas six of the Tabs participants never juxtaposed at all.

The benefit of Patchworks’ compliance with the Juxtaposition
Principle was made clear by how many more navigations its
users made to patches already on screen than did the tabbed-
editor users (recall Fig. 8). Such on-screen navigations are
highly efficient as they require only moving one’s eyes.

The lack of juxtaposing by Tabs participants was not for lack
of desire to do so, however:

P15: “One useful feature might be to have the block diagram tile here
[beside a front panel]. . . I want to see both at once.”

P31: Wanted to “look at a bunch of windows next to each other.”

Moreover, all Tabs participants who did juxtapose expressed
difficulty in doing so:

P20: “It is difficult to have multiple VIs [patches] open at the same
time and be looking at them at the same time.”

P21: “I don’t have very many options in terms of how I can arrange
these [patches].”

For example, P31 struggled for nearly 2 minutes with juxta-
posing before arriving at a satisfactory configuration.

The ease of rearranging patches in Patchworks paid off for
Patchworks participants by enabling them to set up long se-
ries of these on-screen navigations. For example, Patchworks
Participant P9 rearranged his patches so that he could watch
four VIs simultaneously while debugging. With this arrange-
ment, he made 36 consecutive on-screen navigations. P3 also
rearranged his patches effectively: he had three episodes of
rearranging that yielded 25, 15, and 14 consecutive on-screen
navigations, respectively. P5 clearly expressed his apprecia-
tion for rearranging in the Patchworks editor:

P5: “The carousel [Patchworks] is nice because you have a lot of
different options [to arrange].”

In lieu of juxtaposing, Tabs participants resorted to less-
efficient clicking back and forth between tabs. For example, P7
made 164 of his 187 navigations in back-and-forth sequences.
Another participant, P15, made a sequence of 27 navigations
in less than 3 minutes flipping between the same two tabs.
These navigation actions could have been eliminated if the
patches were juxtaposed on screen.

The Signpost Principle
The Signpost Principle emphasizes the importance of having
small, concise representations or summaries of open patches
that provide sufficient information to quickly make effective
navigation decisions. Tabs were the main form of such repre-
sentations used in the tabbed editor. In contrast, Patchworks
used code thumbnails to summarize the contents of VIs in the
bird’s eye view (recall Fig. 6b).

In many circumstances, tabs did not convey sufficient infor-
mation for participants to make effective navigation decisions,
and as a consequence Tabs participants made numerous navi-

gation mistakes (recall Fig. 9). The problems with tabs were
further reinforced in numerous episodes by Tabs participants.
For example, P4 had two episodes of “losing” tabs.

P4: “Where did I put it? . . . I lost it.”

P4: “Way too many things open at this point . . . Where did it go? . . .
Nope, I lost it. Now I can’t go back because I don’t know where I
was.”

Tabs Participant P18 further expounded on the difficulty of
having too many tabs:

P18: “If I have too many tabs, same issue if I have too many windows,
it makes it really small and you can’t see the name.”

In contrast, Patchworks participants expressed positive impres-
sions of the thumbnail patches in the bird’s eye view.

P25: “You can zoom out, and you can pan out to see what all you
actually have open, so that’s really helpful, so it resolves the getting-
lost-in-a-thousand-VIs thing.”

P2: “I do like that you can zoom out and see everything that you are
looking at. . . Definitely helps.”

Two Patchworks participants even drew direct comparisons
between the tabbed and the Patchworks designs:

P5: “Hopefully you name your VIs well so that you can re-navigate
[using tabs], but I think with the carousel [Patchworks] it would
definitely be an improvement once you got used to it”

P6: “This is excellent. I like this a lot better than having to go through
the list of VIs you have open. . . It is definitely easier to navigate.”

The Blowup Principle
The Blowup Principle emphasizes providing a programmer
the ability to efficiently toggle a patch in a multi-patch display
into an enlarged “blowup” view. Only the Patchworks editor
contained a feature for toggling to a blowup view. Thus, the
empirical support for this principle came entirely from the
Patchworks participants.

As our empirical results showed, Patchworks participants
made substantial use of the blowup-patch feature in tandem
with the multi-patch display of the patch grid. For example,
P26 toggled into the blowup view 40 times during his session,
yet he spent only 26% of his session in this view. Likewise, an-
other participant, P2, commented explicitly on liking to toggle
back and forth between the patch grid and blowup view:

P2: “Easy to zoom in, zoom out, bring it to be full sized [referring to
the blowup view] . . . It is nice to go back and forth [toggles and
untoggles the blowup view repeatedly].”

One popular strategy was to use the blowup view for large,
complex VIs. For instance, P26 repeatedly toggled the com-
plex ProcessInput VI into blowup mode, while using the
multi-patch display to visit smaller VIs. Similarly, P14 also
used the blowup view when she needed to understand complex
VIs. She toggled the complex Main VI into a blowup view
several times during her session:

P14: “I’m going to make it 100% of my screen so I can read into it. . .
I’m trying to figure out what is going on in this Main VI.”

The Cleanup Principle
The Cleanup Principle emphasizes helping programmers to
efficiently close open patches that are cluttering the workspace

and are not currently relevant to what the programmer is work-
ing on. Implicit in this principle is the idea that relevant
patches should not be closed along with the irrelevant ones.
Both the tabbed and Patchworks editors had only rudimentary
features for closing individual open patches (clicking a button
on the tab or patch-cell label, respectively). Thus, for all our
participants, regardless of treatment, cleaning up open patches
meant closing each selected patch individually.

As our results showed, participants tended to let open patches
pile up, and then perform cleanup on groups of patches. For
example, P4 became overwhelmed by the number of open
patches, and began closing patches:

P4: “Too many things open right now. I just need to clean it up a bit.”

The importance of closing only irrelevant patches was made
clear by episodes where participants inadvertently closed rel-
evant ones. If participants closed all of their patches, they
almost always began reopening a subset of the patches; how-
ever, they often had difficulty finding the right patches to re-
open. For example, Tabs Participant P20 had started cleaning
up, rapidly closing tabs, but then realized he had accidentally
closed the one he wanted:

P20: “I think I closed the VI by accident.”

He then re-opened four of the patches he had just closed in a
tedious search for the relevant patch. Thus, helping program-
mers to perform cleanup without closing relevant patches was
an important consideration in the Cleanup Principle.

The Heterogeneity Principle
The Heterogeneity Principle emphasizes facilitating program-
mer navigation among a variety of patch types—beyond only
code. In our study, both the tabbed and Patchworks editors
treated program output (LabVIEW front panels) as first-class
patches similar to the source code (block diagrams). Regard-
less of the editor used, participants made over a quarter of
their navigations to those non-code patches.

A debugging strategy employed by all the Patchworks partic-
ipants but one was to juxtapose code patches with program-
output patches to observe the effect of code changes on run-
time values. For example, P9 juxtaposed three block diagrams
(code patches) and one front panel (program-output patch). He
then repeatedly interacted with the front panel and watched
the dataflow propagate through each of the block diagrams in
an attempt to determine the cause of an incorrect value. Other
Patchworks participants discussed similar strategies:

P13: “I placed them side by side to see the front panel and diagram,
mostly for the Main VI, to see where inputs were going through.”

P16: “I usually had the Main front panel and diagram up, and one or
two other diagrams up.”

Interestingly, this juxtaposing approach was popular among
Tabs participants as well. Although Tab participants rarely
juxtaposed, every one of the ten who did, did so to place a
code patch alongside a program-output patch. For example, at
first, P28 had his tabbed editor in the default single-patch dis-
play. He repeatedly switched back and forth between a block
diagram (code) tab and a front-panel (program output) tab to
observe how values were affected. He repeated this tedious

process for nearly 6 minutes before becoming frustrated and
reconfiguring his editor to juxtapose the two patches, enabling
him to more efficiently navigate between them. Such empiri-
cal observations clearly motivate the Heterogeneity Principle’s
emphasis on non-code patches.

Triangulation with Prior Research
To enhance the credibility and validity of our candidate prin-
ciples, we triangulated with prior research results. Although
the principles were inspired by our empirical study, support
for each one could also be found scattered throughout the
literature.

Regarding the Juxtaposition Principle, there is support for the
idea that programmers want to juxtapose code and doing so
enhances their ability to navigate. For example, one study
found that programmers expressed wanting to juxtapose code
patches [2]; however, similar to our Tabs participants, they
rarely do because of the tediousness of juxtaposing patches in
tabbed editors, such as Eclipse [2, 4, 25]. In our previous study
comparing editors with single-patch and multi-patch displays
(Eclipse versus Code Bubbles and Patchworks), participants
who used the multi-patch editors navigated significantly faster
than those who used the single-patch editor—despite being
experienced with the single-patch editor and unfamiliar with
the multi-patch ones [15].

Furthermore, the importance of being able to rearrange patches
efficiently in multi-patch displays has also been well motivated.
For example, Plumlee and Ware [42] have argued convincingly
about the inefficiencies of window management. In particular,
they found that sizing and positioning windows on screen re-
quired users to devote inordinate amounts of time and attention.
Efficiency of rearranging patches is of particular importance
to programmers, because studies have found that their goals
change rapidly during programming tasks [29, 36], thus, sug-
gesting that they will need to rearrange often. However, in
modern tabbed code editors, such rearranging is tedious, and
as a consequence, programmers rarely do so [4, 25].

Prior research on recognition versus recall has clear impli-
cations for the Signpost Principle. It is well known that, in
accessing a memory, recognition based on cues in the environ-
ment requires humans to do less mental processing than does
recalling without such environmental support (e.g., [1]). The
Signpost Principle is concerned with being able to quickly re-
member sufficient information about patches to make effective
navigation decisions. Thus, it emphasizes providing program-
mers with effective opportunities for recognition. Consistent
with our study results, prior works have critiqued tabbed ed-
itors for the lack of recognition support offered by tabs. For
example, they have found tabs to not be representative of their
associated patches, and thus, disruptive to associative mem-
ory [32, 35]. In fact, one study showed that programmers
frequently had to check the content of patches associated with
tabs because they could not infer the content from the labels
on the tabs [44]. To overcome these issues, thumbnails, similar
to those provided by the bird’s eye view in the Patchworks
editor, have been investigated. For example, thumbnails have
been found to effectively support information retrieval by end
users [43] and to help programmers navigate large code files

and code bases [9]. Recently, such thumbnails have been in-
corporated into several popular code editors, including Visual
Studio and Sublime Text.

In contrast to the above principles, we are unaware of any
existing research related to the Blowup Principle; however,
blowup-patch features have recently begun to appear in popu-
lar code editors. For example, both Eclipse and Visual Studio
allow programmers to toggle editor patches to a blowup view.
However, these editors are still based on single-patch tabbed
editors. In their cases, the main benefit of the blowup view
is to overcome the limited screen space afforded to the editor
due to a multitude of other panels present in the development
environment (e.g., package explorer, console output, outline
view, etc.). In fact, the tabbed version of LabVIEW also had
many views; however, its designers did not include a blowup
feature for editor patches, suggesting that they could have
benefited from the Blowup Principle.

Prior research has confirmed the Cleanup Principle, and in
particular, the importance of helping programmers clean up
only irrelevant code. For example, studies have shown that
programmers often close all of their open patches to proceed
from a clean slate [11, 34]. Many modern code editors provide
“close all” features; however, wiping all tabs has also been
found to be problematic, because programmers actually want
to keep some of the patches open. For example, one study
found that programmers wasted an average of 60 seconds
to reopen the patches they wanted after closing too many of
them [23]. Others have similarly reported on the costliness of
recovering such state after suspending a task due to the loss
of contextual cues [18]. However, despite this evidence, tools
have yet to provide effective support for selective cleanup.

Support for the Heterogeneity Principle from prior research
has mainly focused on the importance of facilitating naviga-
tion between code and program output. A primary benefit
of enabling such navigation is that it potentially shortens a
programmers’ feedback loop of running the application, in-
teracting with it, and observing the runtime behavior. For
example, the Whyline programming environment allows a
programmer to ask questions about a program’s output and
provides direct links to the relevant code [24]. Another tool,
the Theseus programming environment, annotates JavaScript
source code with runtime information, thus, combining pro-
gram code and output into a single patch [31]. Still other tools
have provided navigational links between code and other types
of artifacts, such as emails and bug reports [48] and related
code examples from the web [5]. Such tools further illustrate
the potential benefits of considering heterogenous patch types
in the design of code editors.

Limitations
Our study had several limitations to generalizability common
to laboratory studies of programmers. For example, there is a
question as to how well the sample of programmers and tasks
in our study represent our target populations. Our participants
were unfamiliar with the code base and were given a relatively
short amount of time (less than 1 hour) to work; however,
they were all professional programmers, increasing the likeli-
hood that they were representative of expert programmers of

visual dataflow languages. The code base was also relatively
small; however, it was based on an open source example, and
the seeded bugs were ones we actually encountered in prac-
tice. Finally, we studied only two editor designs, leaving the
comparison of other designs for future work.

CONCLUSION
In this paper, we have presented an empirical study comparing
the navigation behaviors of professional LabVIEW program-
mers using two different code-editor interfaces: the ubiquitous
tabbed editor and the experimental Patchworks editor. Key
findings of our study included the following:

• Patchworks users performed significantly fewer clicks per
navigation than users of the tabbed editor.
• Patchworks users juxtaposed patches significantly more

than users of the tabbed editor, and as a consequence, also
made more highly efficient on-screen navigations.
• Patchworks users exhibited significantly fewer navigation

mistakes than users of the tabbed editor.
• All programmers, regardless of editor, tended to let open

patches pile up and then clean them up by closing them en
masse; however, following such closings, they often had
difficulty locating patches they had inadvertently closed.
• All programmers, regardless of editor, frequently navigated

between code and program-output patches.
• Like textual language programmers in prior studies, the vi-

sual dataflow language programmers in our study exhibited
high rates of navigation and frequently revisited patches.

Based on these findings, we proposed five principles for the
design of effective navigation affordances in code editors.

Moving forward, we hope that the principles we proposed will
help serve as an invaluable resource and foundation for the
designers of code editors. There continues to be considerable
enthusiasm for the design of new navigation affordances for
code editors (e.g., [4, 12, 15, 20, 27]). However, prior to this
work, a cohesive set of guidance on the design of these com-
plex, multifaceted interfaces has been sorely lacking. Thus,
our proposed principles help fill an important gap that should
enable designers to explore imaginative new features while
ensuring that the essential navigation needs of programmers
continue to be met effectively.

ACKNOWLEDGMENTS
We give special thanks to Andrew Dove for his counsel on all
things LabVIEW. This material is based upon work supported
by National Instruments and by the National Science Founda-
tion under Grant No. 1302117. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
National Instruments or of the National Science Foundation.

REFERENCES
1. John R. Anderson and Gordon H. Bower. 1972.

Recognition and retrieval processes in free recall.
Psychol. Rev. 79, 2 (March 1972), 97–123.

2. Andrew. Bragdon. 2009. Creating Simultaneous Views of
Source Code in Contemporary IDEs Using Tab Panes and

MDI Child Windows: A Pilot Study. Technical Report
CS-09-09. Brown Univ.

3. Andrew Bragdon, Steven P. Reiss, Robert Zeleznik,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. 2010a. Code Bubbles: Rethinking the User
Interface Paradigm of Integrated Development
Environments. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering -
Volume 1 (ICSE ’10). ACM, New York, NY, USA,
455–464.

4. Andrew Bragdon, Robert Zeleznik, Steven P. Reiss,
Suman Karumuri, William Cheung, Joshua Kaplan,
Christopher Coleman, Ferdi Adeputra, and Joseph J.
LaViola, Jr. 2010b. Code Bubbles: A Working Set-based
Interface for Code Understanding and Maintenance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 2503–2512.

5. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric programming:
Integrating Web search into the development
environments. In Proc. 28th Int’l Conf. on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 513–522.

6. Michael J. Coblenz, Andrew J. Ko, and Brad A. Myers.
2006. JASPER: An Eclipse Plug-in to Facilitate Software
Maintenance Tasks. In Proceedings of the 2006 OOPSLA
Workshop on Eclipse Technology eXchange (ETX ’06).
ACM, New York, NY, USA, 65–69.

7. National Instruments Corporation. 2008. LabVIEW
Calculator. http://www.ni.com/example/30779/ Accessed:
2017-01-06.

8. National Instruments Corporation. 2017. LabVIEW
System Design Software. http://www.ni.com/labview/
Accessed: 2017-01-06.

9. Robert DeLine, Mary Czerwinski, Brian Meyers, Gina
Venolia, Steven Drucker, and George Robertson. 2006.
Code Thumbnails: Using Spatial Memory to Navigate
Source Code. In Proceedings of the Visual Languages
and Human-Centric Computing (VL/HCC ’06). IEEE
Computer Society, Washington, DC, USA, 11–18.

10. Robert DeLine, Mary Czerwinski, and George Robertson.
2005. Easing Program Comprehension by Sharing
Navigation Data. In Proceedings of the 2005 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’05). IEEE Computer Society,
Washington, DC, USA, 241–248.

11. Robert DeLine, Amir Khella, Mary Czerwinski, and
George Robertson. 2005. Towards Understanding
Programs Through Wear-based Filtering. In Proceedings
of the 2005 ACM Symposium on Software Visualization
(SoftVis ’05). ACM, New York, NY, USA, 183–192.

12. Robert DeLine and Kael Rowan. 2010. Code Canvas:
Zooming Towards Better Development Environments. In
Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2 (ICSE
’10). ACM, New York, NY, USA, 207–210.

13. Martin Ester, Hans-Peter Kriegel, Jörg Sander, and
Xiaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise..
In Proc. 2nd Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’96). 226–231.

14. Thomas Fritz, David C. Shepherd, Katja Kevic, Will
Snipes, and Christoph Bräunlich. 2014. Developers’
Code Context Models for Change Tasks. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE ’14). ACM,
New York, NY, USA, 7–18.

15. Austin Z. Henley and Scott D. Fleming. 2014. The
Patchworks Code Editor: Toward Faster Navigation with
Less Code Arranging and Fewer Navigation Mistakes. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New
York, NY, USA, 2511–2520.

16. Austin Z. Henley, A. Singh, Scott D. Fleming, and
Maria V. Luong. 2014. Helping programmers navigate
code faster with Patchworks: A simulation study. In
Proceedings of the 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing
(VL/HCC ’14). 77–80.

17. Eric Horvitz. 1999. Principles of Mixed-initiative User
Interfaces. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI ’99). ACM,
New York, NY, USA, 159–166.

18. Shamsi T. Iqbal and Eric Horvitz. 2007. Disruption and
Recovery of Computing Tasks: Field Study, Analysis,
and Directions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’07). ACM, New York, NY, USA, 677–686.

19. W. Jernigan, A. Horvath, M. Lee, M. Burnett, T. Cuilty, S.
Kuttal, A. Peters, I. Kwan, F. Bahmani, and A. Ko. 2015.
A principled evaluation for a principled Idea Garden. In
Proc. 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC ’15). 235–243.

20. Thorsten Karrer, Jan-Peter Krämer, Jonathan Diehl, Björn
Hartmann, and Jan Borchers. 2011. Stacksplorer: Call
Graph Navigation Helps Increasing Code Maintenance
Efficiency. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’11). ACM, New York, NY, USA, 217–224.

21. Mik Kersten and Gail C. Murphy. 2006. Using Task
Context to Improve Programmer Productivity. In
Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(FSE ’06). ACM, New York, NY, USA, 1–11.

http://www.ni.com/example/30779/
http://www.ni.com/labview/

22. Katja Kevic, Braden M. Walters, Timothy R. Shaffer,
Bonita Sharif, David C. Shepherd, and Thomas Fritz.
2015. Tracing Software Developers’ Eyes and
Interactions for Change Tasks. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015). ACM, New York, NY,
USA, 202–213.

23. Andrew J. Ko, Htet Aung, and Brad A. Myers. 2005.
Eliciting Design Requirements for Maintenance-oriented
IDEs: A Detailed Study of Corrective and Perfective
Maintenance Tasks. In Proceedings of the 27th
International Conference on Software Engineering (ICSE
’05). ACM, New York, NY, USA, 126–135.

24. Andrew J. Ko and Brad A. Myers. 2009. Finding Causes
of Program Output with the Java Whyline. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’09). ACM, New
York, NY, USA, 1569–1578.

25. Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and
Htet Htet Aung. 2006. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks. IEEE
Trans. Softw. Eng. 32, 12 (Dec. 2006), 971–987.

26. Jan-Peter Krämer, Thorsten Karrer, Joachim Kurz,
Moritz Wittenhagen, and Jan Borchers. 2013. How Tools
in IDEs Shape Developers’ Navigation Behavior. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’13). ACM, New
York, NY, USA, 3073–3082.

27. Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and
Jan Borchers. 2012. Blaze: Supporting Two-phased Call
Graph Navigation in Source Code. In CHI ’12 Extended
Abstracts on Human Factors in Computing Systems (CHI
EA ’12). ACM, New York, NY, USA, 2195–2200.

28. Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and
Simone Stumpf. 2015. Principles of Explanatory
Debugging to Personalize Interactive Machine Learning.
In Proceedings of the 20th International Conference on
Intelligent User Interfaces (IUI ’15). ACM, New York,
NY, USA, 126–137.

29. Joseph Lawrance, Margaret Burnett, Rachel Bellamy,
Christopher Bogart, and Calvin Swart. 2010. Reactive
Information Foraging for Evolving Goals. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’10). ACM, New York, NY,
USA, 25–34.

30. Michael J. Lee, Faezeh Bahmani, Irwin Kwan, Jilian
LaFerte, Polina Charters, Amber Horvath, Fanny Luor,
Jill Cao, Catherine Law, Michael Beswetherick, Sheridan
Long, Margaret Burnett, and Andrew J. Ko. 2014.
Principles of a debugging-first puzzle game for
computing education. In Proceedings of the 2014 IEEE
Symposium on Visual Languages and Human-Centric
Computing (VL/HCC ’14). 57–64.

31. Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014.
Addressing Misconceptions About Code with Always-on
Programming Visualizations. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’14). ACM, New York, NY, USA,
2481–2490.

32. Chris Parnin and Robert DeLine. 2010. Evaluating Cues
for Resuming Interrupted Programming Tasks. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10). ACM, New
York, NY, USA, 93–102.

33. Chris Parnin and Carsten Görg. 2006. Building Usage
Contexts During Program Comprehension. In Proc. 14th
IEEE Int’l Conf. Program Comprehension (ICPC ’06).
13–22.

34. Chris Parnin, Carsten Görg, and Spencer Rugaber. 2010.
CodePad: Interactive Spaces for Maintaining
Concentration in Programming Environments. In
Proceedings of the 5th International Symposium on
Software Visualization (SOFTVIS ’10). ACM, New York,
NY, USA, 15–24.

35. Chris Parnin and Spencer Rugaber. 2012. Programmer
information needs after memory failure. In Proc. 20th
IEEE Int’l Conf. Program Comprehension (ICPC ’12).
123–132.

36. David Piorkowski, Scott Fleming, Christopher Scaffidi,
Christopher Bogart, Margaret Burnett, Bonnie John,
Rachel Bellamy, and Calvin Swart. 2012. Reactive
information foraging: An empirical investigation of
theory-based recommender systems for programmers. In
Proc. ACM SIGCHI Conf. Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
1471–1480.

37. David Piorkowski, Scott D. Fleming, Christopher Scaffidi,
Margaret Burnett, Irwin Kwan, Austin Z. Henley, Jamie
Macbeth, Charles Hill, and Amber Horvath. 2015. To Fix
or to Learn? How Production Bias Affects Developers’
Information Foraging during Debugging. In 31st IEEE
International Conference on Software Maintenance and
Evolution (ICSME ’15). 11–20.

38. David Piorkowski, Scott D. Fleming, Christopher
Scaffidi, Liza John, Christopher Bogart, Bonnie E. John,
Margaret Burnett, and Rachel Bellamy. 2011. Modeling
programmer navigation: A head-to-head empirical
evaluation of predictive models. In Proceedings of the
2011 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC ’11). 109–116.

39. David Piorkowski, Austin Z. Henley, Tahmid Nabi,
Scott D. Fleming, Christopher Scaffidi, and Margaret
Burnett. 2016. Foraging and Navigations, Fundamentally:
Developers’ Predictions of Value and Cost. In
Proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering
(FSE 2016). ACM, New York, NY, USA, 97–108.

40. David J. Piorkowski, Scott D. Fleming, Irwin Kwan,
Margaret M. Burnett, Christopher Scaffidi, Rachel K.E.
Bellamy, and Joshua Jordahl. 2013. The Whats and Hows
of Programmers’ Foraging Diets. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, 3063–3072.

41. Peter Pirolli and Stuart Card. 1999. Information Foraging.
Psychological Review 106, 4 (1999), 643–675.

42. Matthew D. Plumlee and Colin Ware. 2006. Zooming
Versus Multiple Window Interfaces: Cognitive Costs of
Visual Comparisons. ACM Trans. Comput.-Hum. Interact.
13, 2 (June 2006), 179–209.

43. George Robertson, Mary Czerwinski, Kevin Larson,
Daniel C. Robbins, David Thiel, and Maarten van
Dantzich. 1998. Data Mountain: Using Spatial Memory
for Document Management. In Proceedings of the 11th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’98). ACM, New York, NY, USA,
153–162.

44. Janice Singer, Robert Elves, and Margaret-Anne Storey.
2005. NavTracks: Supporting Navigation in Software
Maintenance. In Proceedings of the 21st IEEE
International Conference on Software Maintenance
(ICSM ’05). IEEE Computer Society, Washington, DC,
USA, 325–334.

45. Alka Singh, Austin Z. Henley, Scott D. Fleming, and
Maria V. Luong. 2016. An Empirical Evaluation of
Models of Programmer Navigation. In IEEE Int’l
Conference on Software Maintenance and Evolution
(ICSME ’16). 9–19.

46. Randall B. Smith, John Maloney, and David Ungar. 1995.
The Self-4.0 User Interface: Manifesting a System-wide
Vision of Concreteness, Uniformity, and Flexibility. In
Proceedings of the Tenth Annual Conference on
Object-oriented Programming Systems, Languages, and
Applications (OOPSLA ’95). ACM, New York, NY, USA,
47–60.

47. Jared M. Spool, Christine Perfetti, and David Brittan.
2004. Designing for the Scent of Information. User
Interface Engineering, Middleton, MA.

48. Davor Čubranić, Gail C. Murphy, Janice Singer, and
Kellogg S. Booth. 2005. Hipikat: A Project Memory for
Software Development. IEEE Trans. Softw. Eng. 31, 6
(2005), 446–465.

49. Kirsten N. Whitley, Laura R. Novick, and Doug Fisher.
2006. Evidence in Favor of Visual Representation for the
Dataflow Paradigm: An Experiment Testing LabVIEW’s
Comprehensibility. Int. J. Hum.-Comput. Stud. 64, 4
(April 2006), 281–303.

	Introduction
	Background
	Programmer Navigation
	Visual Dataflow Languages

	Code Editors Compared
	Tabbed Code Editor
	Patchworks Code Editor

	Method
	Participants
	Code Base and Tasks
	Procedure
	Qualitative Analysis

	Results
	Patchworks Evaluation Results
	Reducing Navigation Cost
	Facilitating Patch Juxtaposition
	Reducing Navigation Mistakes
	Enabling Efficient Blowup View

	Trends across Treatments
	Rapid Patch Scanning
	Cleaning Up Open Patches
	Navigations to Program-Output Patches

	Visual Dataflow versus Textual Language Programmers

	Discussion
	Implications for Design: Principles
	The Juxtaposition Principle
	The Signpost Principle
	The Blowup Principle
	The Cleanup Principle
	The Heterogeneity Principle

	Triangulation with Prior Research
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES

