
CodeRibbon: More Efficient Workspace
Management and Navigation for Mainstream

Development Environments
Benjamin P. Klein and Austin Z. Henley

University of Tennessee
Knoxville, Tennessee

bklein3@vols.utk.edu, azh@utk.edu

Abstract—Developers spend considerable time navigating and
managing open code documents in their development environ-
ment. Researchers have proposed novel interfaces to address the
problems of workspace management, such as the Patchworks
and Code Bubbles code editors, which replace the traditional
tabbed document interface. However, these interfaces are not
available in mainstream development environments despite their
promising laboratory results. In this paper, we demonstrate
CodeRibbon, a user interface for more efficient workspace
management and navigation that is publicly available as a code
editor plugin. CodeRibbon provides a virtually endless ribbon
of code documents that are arranged in an adjustable grid for
efficient juxtaposition and navigation with minimal document
management. Our implementation is open source and currently
in development as plugins for Atom and VS Code. Since prior
research on these interfaces has been limited to laboratory
studies, we aim to collect usage data from a longitudinal field
study involving professional developers engaged in real-world
tasks. This work should provide a better understanding of
how tools can support developers in efficiently managing their
development environments.
Demonstration video: https://youtu.be/m5wQ87ItVGg

Index Terms—code editor, development environment,
workspace management, code navigation

I. INTRODUCTION

Developers spend considerable time and effort navigating
and managing open code documents in their development
environment. One notable study found that developers spend
35% of their time on the mechanics of navigating [11], such
as scrolling or managing tabs. Despite developers spending
time on these navigation activities, they often can not find
the information they are looking for [13], [14]. The design of
development environments needs to better support developers
in managing and navigating their workspace.

Researchers have proposed novel user interfaces to address
the problems of workspace management that replace the
traditional tabbed document interface. Code Bubbles [2], [3]
provides a large two-dimensional canvas for opening and
arranging code documents and Patchworks [8], [9] provides
a ribbon that extends off the screen to the left and right with a
fixed grid of code documents. However, these interfaces have
not been adopted by mainstream development environments
although they both had promising laboratory results.

In this paper, we demonstrate CodeRibbon, a user interface
for more efficient workspace management and navigation that
is publicly available as a code editor plugin. CodeRibbon pro-
vides a virtually endless ”ribbon” of code documents that are
arranged in an adjustable grid for efficient juxtaposition and
navigation with minimal document management. Currently,
our implementation is open source and in development as
plugins1 for Atom and VS Code, two popular code editors.

To better understand how workspace management can be
improved for developers, we plan to perform a longitudinal
field study involving professional developers engaged in real-
world tasks. By integrating into existing development envi-
ronments, developers can continue to use their other tooling
and adopt CodeRibbon with less friction. This approach is
to overcome the limitations of prior studies on related tools
that were in lab settings with artificial tasks and different
development tools than typically used by the participants.

II. BACKGROUND & RELATED WORK

Tabbed document interfaces afford users to open multiple
documents, switch between them using tabs, scroll within
a single document, and view one or more documents at a
given time by tiling the finite workspace. Popular code editors
that employ this interface include Visual Studio, Eclipse,
IntelliJ products, XCode, VS Code, and Atom. Despite tabbed
documents being the most common paradigm found in code
editors, numerous studies have identified their limitations. For
example, a study found that developers spent 35% of their
time on the mechanics of navigating code documents, such
as scrolling and tab switching. Furthermore, developers often
can not find the tab they are looking for [9], [12], [16] or
accidentally close it [11]. Similarly, researchers have identified
tabs to be problematic in web browsers as well [4], [7]. Much
of these problems could be solved if tabbed documents could
be arranged side-by-side more efficiently, which developers
want to do [1], [9], but they report that it is often too
tedious [3], [9], [11].

1https://utk-se.github.io/CodeRibbon/



a

b

c

Fig. 1. The CodeRibbon interface as an Atom plugin composed of (a) Atom’s standard file listing, (b) CodeRibbon’s grid of code documents showing a
resized 2x2 configuration, and (c) there are many more documents to the right that are off screen, that can be navigated to using keyboard shortcuts or a
horizontal scrollbar. Navigating to these off-screen documents works like an animated carousel.

Researchers proposed Code Bubbles [2], [3] that provides
a interface involving bubbles of code fragments that can
be arranged on a large two-dimensional canvas. Laboratory
studies found that developers using Code Bubbles navigate
faster than when using traditional code editors [2], [3], [8].
However, the open two-dimensional space may provide too
much freedom, with one study finding that developers spent
considerable time tinkering with the arrangements of their
open code documents. Although the paradigm has been applied
by other researchers (i.e., Code Canvas [6] and Debugger
Canvas [5]), this paradigm has likely not been made available
in existing mainstream development environments due to the
complexity in implementing it.

In an effort to overcome the limitations of Code Bubbles
while leveraging the benefits, researchers proposed Patch-
works [8], [10]. It provides a one-dimensional ribbon interface
that extends past the left and right edges of the screen, with
code documents arranged on a grid. To reduce window man-
agement activities, the grid cannot be adjusted or resized. In
a controlled study comparing Patchworks, Code Bubbles, and
Eclipse, participants navigated faster, spent less time arranging
the code documents, and made fewer navigation mistakes [8].
Despite these benefits, Patchworks is not available in main-
stream development environments and has not been validated
using realistic programming tasks.

III. TOOL: CODERIBBON

We designed CodeRibbon (see Fig. 1) to address the
workspace management and navigation issues that developers
continue to face. It uses the ribbon interface introduced by
Patchworks [8] that enables efficient navigation to groups of
open code documents. In contrast to Patchworks, we added a

configurable grid based on the freedom of Code Bubbles [2]
that allows the user to change the number of visible code
documents (e.g., 2x2 or 2x1; compare Figs. 1 and 3). Addi-
tionally, we incorporated more recent design principles about
code editors regarding document management [9], [15]. Both
plugins are implemented in JavaScript with the Atom plugin
available2 and ready for everyday use, while the VS Code
plugin requires more development to circumvent the restrictive
nature of VS Code’s plugin API. The features are described
in the remainder of this section.

A. Navigating the Ribbon

Navigation within the visible section of the ribbon initially
works similarly to that of editors that tile their workspaces and
defaults to a grid of empty code documents. Once more code
documents are needed than the visible grid can hold, the user
can shift the ribbon to the left or right, revealing more empty
documents. Users can click to focus any code document or
use keyboard shortcuts to shift focus in any cardinal direction.
Controls that would normally change the active tab now move
focus along code documents within the ribbon, e.g. Ctrl-Tab
moves the focus to the next code document in the column and
then to the next column.

When a document is opened from a tree view in conven-
tional editors it creates a tab, however in CodeRibbon newly
opened code is placed into an empty code document within
the ribbon. These documents are automatically added to the
end of the ribbon (on the right) such that a user will never run
out of available space for documents. While CodeRibbon has
multiple strategies available for determining where to open
new documents, the user can also directly drag files onto

2https://utk-se.github.io/CodeRibbon/



Fig. 2. CodeRibbon’s overview mode that shows a zoomed out view of the
ribbon, and enables users to easily close, rearrange, and navigate.

documents to open them or use a fuzzy search to open files
from their project within an empty document.

Once the ribbon is populated with opened code documents
the user is able to move those documents by dragging one over
another, swapping them in place. Conventional tiling methods
such as “splitting” a single view into two are instead replaced
with functions that create additional documents within a
column, or create additional columns within the ribbon. This
enables users to efficiently place code documents side-by-side
horizontally or vertically.

B. Dynamic Ribbon Layout

To address the problems caused by the existing flexibility of
window management in modern operating systems the exact
number of columns displayed from the ribbon is dynamically
calculated. In the case where a developer splits their monitor
vertically between the editor and another window, the editor is
often not wide enough to display the same number of columns
as when the editor takes up the whole workspace. In a less
common environment developers may use a workspace that is
extremely wide, for example on 32:9 widescreen monitors, and
in these cases additional columns are displayed in order to fit
as much code on screen as possible without losing readability.

In order to determine how many columns should optimally
be shown at various editor window widths, we used the
average code width and line length. It’s been shown that a
large variety of languages obey an approximate line length
guide [15] of 80 characters. CodeRibbon’s default behaviour
will continue to show columns so long as each column
maintains visibility of the code up to the user’s preferred
line length setting. This dynamic layout approach is key to
allowing users the flexibility to organize their editor window
alongside other information sources, whereas tabbed document
interfaces are usually not able to change a user’s existing
layout automatically when the window is resized.

C. Overview Mode

Shown in Fig. 2, CodeRibbon’s overview mode provides a
bird’s eye-like visualization of your open code documents that
enables developers to quickly scan what documents are open.
In practice this mode is implemented by zooming out from
the ribbon and increasing the space between each document
to provide for better visual separation between individual

Fig. 3. CodeRibbon illustrating a 2x1 grid configuration, in contrast to the
2x2 grid in Fig. 1.

documents. This mode aims to improve the time it takes for
users to identify documents within the ribbon, along with
allowing users to move along the ribbon in a coarser and less
detail-oriented view. Once in overview mode the same amount
of scrolling moves past more Patches and the user can more
easily move the focus of the editor with standard directional
keybindings.

D. Ribbon Movement

Since studies have found developers spend a lot of time
navigating their code, we focused on how users move about
their ribbon. Most operations that shift focus along the ribbon
are designed in such a way to minimize disruption to spatial
memory and to make it less visually taxing to follow move-
ments. In order to minimize the chance of losing a mental
position along the ribbon and reduce saccadic eye movements,
smooth scrolling and animated transitions are used. In the
most extreme location changes such as opening a file which
is placed at the tail end of the ribbon, a smooth scroll is used
to ensure the user is able to get a feel for the distance which
was traveled along the ribbon to get to the tail end.

Transitioning into overview is also animated fluidly for this
same reason, if we were to transition instantly we would
risk visual jerk forcing users to mentally find their position
again. Even though the documents still display the same
content in overview mode, the text itself is often too small
to read, making the transition even more important since
users have less information with which to reorient themselves.
Additionally, documents are given extra padding in overview
mode to make the ribbon’s structure and layout more visible,
and the active document is highlighted.

E. Increases in Flexibility

In Patchworks, the user was not able to configure the
layout of the editor, while CodeRibbon continues to restrict
the fundamental layout of columns along the ribbon, users
are granted flexibility within each column to account for more
varied lengths of code. Most notably the layout is not confined
to the initial grid, but instead is confined to a series of columns
which contain documents stacked vertically. Each of these
columns have the same flexibility as many split-view editors,
allowing a longer file to take up the entire height of the
workspace, while shorter length files can share the column



with other small files instead of taking up the entire height of
an originally-sized document.

In order to lower the barrier to entry for existing users
of editors that allow splitting a document pane into two,
CodeRibbon maintains similar functionality to that of the
operations that split existing views. In many scenarios a user
desires to open a single file next to itself in order to view two
distinct portions of that file, in a tabbed document editor with
tiling that normally means splitting the single open file right
or left, which creates a vertically divided workspace of two
views. In CodeRibbon, instead of splitting an existing view in
two halves vertically an additional column is inserted along
the ribbon at that location to give a similar experience.

IV. PRELIMINARY RESULTS

During initial development we had over 800 downloads and
a few dozen users provided feedback on their experience. The
majority of this feedback has been taken into consideration and
changes to CodeRibbon have already been made, with some
features still under development. In addition to the feedback of
other users, the development of CodeRibbon took place almost
entirely while using CodeRibbon itself by one of the authors,
which was a primary method in which bugs were found.

Examples of what features were requested include the
ability to split code documents, column creation and removal,
and the zoom functionality. Additional features such as the
ability to drag and manage the columns of the ribbon in the
overview mode are planned to be implemented from user
suggestions. Furthermore, we had planned to only release
the plugin as an Atom plugin, but the project has received
dozens of requests for it to be ported to VS Code, which we
are actively working on. Another user liked the CodeRibbon
design so much, that they have began implementing their own
version for a different editor. Surprisingly, one user reported
that they switched from their current development environment
to Atom with CodeRibbon in order to use it.

After a long period of development on CodeRibbon for
Atom we began to notice patterns in how users made use of
their ribbon and organized documents. While we do not yet
have quantitative data to separate these usage paradigms, we
saw a clear divergence away from our primary hypothesized
usage paradigm: the ribbon as a timeline. Using the ribbon as
a timeline was the hypothesized pattern for Patchworks [8],
where the ribbon grows from the tail end naturally as the user
opens additional files to edit or view. In this usage pattern
the user would move backward along the ribbon in order to
retrace their code or mental path to their current working set
which lives near the tail end of the ribbon. Additionally, this
pattern enables users to open all new documents to the right
without ever closing unneeded documents.

In other usage patterns users would consistently maintain
a smaller total ribbon size, and instead of growing quickly
rightwards they instead will rearrange their current working
set to match the approximate layout of the code they were
working with. Often this layout would resemble a top-down
exploratory approach to understanding a larger software, where

the beginning of the ribbon is more abstract than code
opened rightwards, which is more concrete in most cases.
This paradigm closely resembles how canvas-based editors
(e.g., Code Bubbles [2]) were used to arrange code segments
by relation. With the addition of the ability to create and
close columns anywhere within the ribbon these users were
more likely to keep their working set in the middle of the
ribbon. This appears to be a result of those users opening new
documents on both the left and right of their current working
set.

V. PROPOSED FIELD STUDY

In contrast to the Patchworks and Code Bubbles studies,
which were limited to controlled environments or tasks, our
goal is to gather data from users in their natural working
environments over several months. Once the study commences
we will gather anonymous usage metrics from CodeRibbon
users that have accepted an opt-in prompt to contribute to this
research. This collection will happen in the background with
little to no effect on the user. We will release the logging
plugin separately, such that other researchers can use it and to
collect baseline data about how developers manage their tabs
in Atom and VS Code without CodeRibbon.

Primary metrics to be collected include: open and close
document events, document rearrangement or resizing events,
broad editing events, and ribbon movements. For privacy, each
code document opened will be given a unique identifier for
the session and no individual keystrokes or identifiers will be
recorded. Analyzing these results can be used to synthesize
new design guidelines for code editors and to evaluate the
effectiveness of CodeRibbon in an ecologically valid setting.

VI. CONCLUSION

In this paper, we have presented the CodeRibbon interface
for more efficient workspace management and navigation in
mainstream development environments. The design builds on
the prior novel interfaces, Patchworks and Code Bubbles, and
is aimed to overcome the limitations of tabbed document
interfaces with a ribbon interface with a configurable grid of
code documents. The grid provides efficient juxtaposition that
can be shifted left or right, revealing more code documents.
Our design is implemented as Atom and VS Code plugins such
that CodeRibbon can be integrated with developers existing
workflows and development environments.

Given the positive feedback of our initial plugin release, we
aim to gather insights from the software engineering research
community. In the future, we will perform a longitudinal
field study to understand how developers use interfaces like
CodeRibbon for realistic development tasks over long periods
of time. Doing so will shed light on how mainstream develop-
ment environments can better support developers in managing
and navigating their workspaces.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation (NSF) under Grant Nos. 1850027 and
2008408.



REFERENCES

[1] A. Bragdon, “Creating simultaneous views of source code in contem-
porary IDEs using tab panes and MDI child windows: A pilot study,”
Brown Univ., Tech. Rep. CS-09-09, 2009.

[2] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: Re-
thinking the user interface paradigm of integrated development environ-
ments,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 455–464.

[3] A. Bragdon, R. Zeleznik, S. P. Reiss, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code bubbles: A
working set-based interface for code understanding and maintenance,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 2503–
2512.

[4] J. C. Chang, N. Hahn, Y. Kim, J. Coupland, B. Breneisen, H. S. Kim,
J. Hwong, and A. Kittur, “When the tab comes due:challenges in the
cost structure of browser tab usage,” in Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. New York, NY,
USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445585

[5] R. DeLine, A. Bragdon, K. Rowan, J. Jacobsen, and S. P. Reiss, “De-
bugger canvas: industrial experience with the code bubbles paradigm,”
in Proc. ICSE, 2012, pp. 1064–1073.

[6] R. DeLine and K. Rowan, “Code Canvas: Zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser. ICSE
’10. New York, NY, USA: ACM, 2010, pp. 207–210.

[7] N. Hahn, J. C. Chang, and A. Kittur, “Bento browser: Complex mobile
search without tabs,” in Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems, ser. CHI ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1–12. [Online].
Available: https://doi.org/10.1145/3173574.3173825

[8] A. Z. Henley and S. D. Fleming, “The Patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mis-
takes,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’14. New York, NY, USA: ACM, 2014,
pp. 2511–2520.

[9] A. Z. Henley, S. D. Fleming, and M. V. Luong, “Toward principles
for the design of navigation affordances in code editors: An
empirical investigation,” in Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, ser. CHI ’17. New
York, NY, USA: ACM, 2017, pp. 5690–5702. [Online]. Available:
http://doi.acm.org/10.1145/3025453.3025645

[10] A. Z. Henley, A. Singh, S. D. Fleming, and M. V. Luong, “Helping
programmers navigate code faster with Patchworks: A simulation study,”
in Proceedings of the 2014 IEEE Symposium on Visual Languages and
Human-Centric Computing, ser. VL/HCC ’14, July 2014, pp. 77–80.

[11] A. J. Ko, H. Aung, and B. A. Myers, “Eliciting design requirements for
maintenance-oriented ides: A detailed study of corrective and perfective
maintenance tasks,” in Proceedings of the 27th International Conference
on Software Engineering, ser. ICSE ’05. New York, NY, USA: ACM,
2005, pp. 126–135.

[12] C. Parnin and C. Görg, “Building usage contexts during program com-
prehension,” in Proc. 14th IEEE Int’l Conf. Program Comprehension,
ser. ICPC ’06, 2006, pp. 13–22.

[13] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi,
and M. Burnett, “Foraging and navigations, fundamentally: Developers’
predictions of value and cost,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 97–108.

[14] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. K. Bellamy, and J. Jordahl, “The whats and hows of programmers’
foraging diets,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’13. ACM, 2013, pp. 3063–
3072.

[15] A. C. Short and A. Z. Henley, “Towards an empirically-based ide: An
analysis of code size and screen space,” in 2019 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), 2019, pp.
199–203.

[16] J. Singer, R. Elves, and M.-A. Storey, “NavTracks: Supporting nav-
igation in software maintenance,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance, ser. ICSM ’05.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 325–334.


