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ABSTRACT  
Empirical studies have revealed that software developers spend 
35%–50% of their time navigating through source code during 
development activities, yet fundamental questions remain: Are 
these percentages too high, or simply inherent in the nature of 
software development? Are there factors that somehow determine 
a lower bound on how effectively developers can navigate a given 
information space? Answering questions like these requires a 
theory that captures the core of developers’ navigation decisions.  
Therefore, we use the central proposition of Information Foraging 
Theory to investigate developers’ ability to predict the value and 
cost of their navigation decisions. Our results showed that over 
50% of developers’ navigation choices produced less value than 
they had predicted and nearly 40% cost more than they had pre-
dicted. We used those results to guide a literature analysis, to 
investigate the extent to which these challenges are met by current 
research efforts, revealing a new area of inquiry with a rich and 
crosscutting set of research challenges and open problems. 

CCS Concepts 
• Software and its engineering➝Software notations and 
tools    • Software and its engineering➝Software creation and 
management 

Keywords 
Information foraging theory; navigation value and costs  

1. INTRODUCTION   
In a landmark paper in 2006, Ko et al. quantified the high cost 
developers incur when foraging for the information they need. In 
their results, developers spent 35% of their time on the mechanics 
alone of foraging between code fragments [21]. Expanding upon 
these findings, we showed that when other aspects of foraging 
were also taken into account, developers spent an average of 50% 
of their time foraging [32]. 

These and other findings about developers’ foraging and naviga-
tions (e.g., [26, 31, 37, 44]) have led software engineering re-
searchers to produce tools that help to reduce developers’ naviga-
tion costs as they look for the information they need [8, 17, 18, 
19, 22, 30, 33, 43]. Despite these gains, however, little is known 
at the foundational level of developer navigation—how well de-
velopers go about choosing where to navigate.  

This is where theory can help.  The essence of theories is abstrac-
tion—mapping instances of successful approaches to crosscutting 
principles. In the realm of human behavior, these abstractions can 
then produce explanations of why some software engineering tools 
succeed at supporting the efforts of software developers and why 
some tools that were expected to succeed did not.  
As Shaw eloquently explained, scientific theory lets technological 
development pass limits previously imposed by relying on intui-
tion and experience [40]. For example, her summary of civil engi-
neering history points out that structures (buildings, bridges, tun-
nels, canals) had been built for centuries—but only by master 
craftsmen. Not until scientists developed theories of statics and 
strength of materials could the composition of forces and bending 
be tamed.  These theories made possible civil engineering accom-
plishments that were simply not possible before, such as the rou-
tine design of skyscrapers by ordinary engineers and architects 
[40]. And indeed, in computer science, we have seen the same 
phenomenon. For example, expert developers once built compil-
ers using only their intuitions and experiences, but the advent of 
formal language theory brought tasks like parser and compiler 
writing to the level that undergraduate computer science students 
now routinely build them in their coursework [1].  

In this paper, we use Information Foraging Theory (IFT) as our 
theoretical foundation [34]. IFT provides a conceptual framework 
describing how people in an information environment, such as an 
IDE, seek information. For example, for developers faced with a 
bug, the information they seek may include how to reproduce the 
bug, what causes the bug, where to fix the bug, and whether simi-
lar bugs were fixed elsewhere [29].  
According to IFT, developers make their navigation decisions by 
predicting the value a navigation will bring and the cost they will 
incur if they take that navigation. When they carry out these navi-
gation decisions, they may be in for disappointments if (1) their 
destination does not provide as much value as expected or (2) the 
cost of extracting the information or getting to it is higher than 
expected.    

This suggests that the fundamental issue behind navigations is 
how accurate developers are about predicting value and cost, and 
whether their accuracy is “enough” for them to be productive. To 
investigate this issue, we conducted an empirical study and litera-
ture analysis, grounded in IFT and structured according to the 
following research questions: 

• RQ1 (Value): How often do developers’ foraging decisions 
yield less value than they expect, and why? 

• RQ2 (Cost): How often is the cost to gather and process de-
sired information more than foraging developers expect, and 
why? 

• RQ3 (Trends in aligning actual value/cost with developers’ 
expectations): What aspects of the above questions do current 
SE research trends address, and how? 
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2. BACKGROUND AND RELATED WORK    
2.1 Information Foraging Theory 
In essence, Information Foraging Theory [34] gives a meaningful 
way to “carve up” an information environment for software de-
velopment and the developers’ actions within that environment, 
and then to investigate how developers use the environment. IFT 
has already proven useful for explaining and predicting developer 
behaviors during software maintenance, in ways beneficial to tool 
design [12, 16, 17, 25, 26, 27, 33].  

IFT’s main constructs are a predator (here, a developer) who 
seeks prey (the developer’s information goals) within an infor-
mation environment made up of information patches (in this pa-
per, Java methods) connected by links (here, IDE features for 
navigating between methods; e.g., search-results links, clickable 
links to a method, adjacent methods via scrolling).  Each link has 
a cost (time to get from one patch to the other) that is influenced 
by both system performance and the human’s cognitive and phys-
ical speed. Fig. 1 shows the information environment in this pa-
per.  

Within each patch are information features (here, words, phrases, 
and graphics in the code or documentation), some of which may 
be the prey that the predator seeks. Information features have 
value, and they also have cost (e.g., time for the human to read 
and process them). Some of the information features are cues that 
label outgoing links to other patches. Cues (the labels on the links) 
provide the predator with hints about what information features 
may be found at the other end of the link. Fig. 2 conceptually 
illustrates two patches with information features, cues, and links. 
In modern development environments, like Eclipse, most dis-
played text has some form of clickable link (e.g., the Open Decla-
ration shortcut on identifiers in the Editor), so there tends to be a 
high density of cues in such environments. 

IFT’s constructs are tied together via IFT’s central proposition, 
which says that the predator treats foraging as an optimization 

problem. More specifically, according to IFT, the predator’s for-
aging actions try to maximize the value V of information they will 
gain from a patch per their cost C of getting to and interacting 
with that patch, i.e.:  

max(V/C) 

However, predators do not have perfect information about a 
patch’s value and cost, so they make their choices based on their 
expectations of value V and of cost C, i.e.: 

max(E(V)/E(C)) 

The predator bases such expectations on whatever information 
they have gleaned so far, such as by inferring them from available 
cues.  

How accurate are foragers in forming these expectations? Soft-
ware engineering research has much to say about information 
professional developers seek (e.g., [26, 42]), but has not systemat-
ically considered the question of how well developers can predict 
these values and costs, or the accompanying implications for SE 
tools. These are the questions this paper investigates.  

2.2 Prior Empirical Studies of Developers 
Prior empirical studies have observed the navigation behavior of 
developers during maintenance activities. That work has shed 
light on the different kinds of information that developers seek. 
These include the need for information about how to use APIs 
[10], about data or control flow  [23, 46], and about requirements 
[31]. These studies have also revealed that developers seek this 
information to answer specific questions that they have [23, 42], 
to test mental hypotheses about how an existing program works 
[4], to develop an overall sense of context [13], or to follow leads 
that simply look relevant to their current task [26]. Rather than 
focusing on what developers seek and why, our investigation 
examines the extent to which they accurately predict the value of 
what they find in particular patches and the cost of getting it. 

Often the reason for seeking code is to edit it, and several prior 
studies have investigated how developers edit code. For example, 
Ying and Robillard investigated whether developers make edits 
differently depending on whether they are fixing bugs or adding 
enhancements [47]. As another example, Posnett et al. investigat-
ed the extent to which developers make focused patterns of code 
edits across maintenance tasks (sometimes called “ownership” of 
code), and whether these patterns are statistically related to the 
resulting rates of defects [35]. In our study, although participants 
were editing at times, our research questions centered on foraging 
rather than on editing per se. 

Little empirical work has investigated the specific question of 
developers’ abilities to predict the value and cost of their 
navigations. One study examined navigations of analysts through 

 
Fig. 1. An information environment (Eclipse) as a developer 
(predator) might see it during debugging. Patches of infor-
mation content are visible in the (a) Package Explorer, (b) 
Editor, and (c) Outline View (plus a region (d) where other 

patches can appear). As the blow-up of (a) shows, each item in 
the Package Explorer is an information feature and also a cue, 

because the item has a link: clicking it opens a file. In (b)’s 
blow-up, the text “openFiles” in the Editor is also an infor-

mation feature and a cue, because it has a clickable link.  

 

 
Fig. 2. Conceptual depiction of an information environment 
with two information patches (rounded boxes) interconnect-

ed by links (directed edges). Each patch contains infor-
mation features (hexagons), with some that are also cues 

(connected to outgoing links).  
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documents and code as they attempted to recover requirement 
traceability between use cases and Java classes, revealing that the 
subjects spent a disproportionate amount of time in low-value 
patches (i.e., more time than the value of those patches justified) 
[31]. This result was consistent with an earlier study into the 
challenges of information foraging by developers, such as the fact 
that searches in code frequently failed to turn up desired results, 
and that developers spent substantial time organizing and re-
organizing files and bookmarks in the IDE [21]. Another study of 
how developers search online resources corroborated that searches 
often lead to irrelevant code and supporting documents, except 
after developers had determined the right search terms for specific 
subtopics [2]. Our work builds on these results. 

3. EMPIRICAL STUDY METHODOLOGY  
To answer our first two research questions, RQ1 and RQ2, we 
conducted a think-aloud study of professional developers. The 
developers worked on a debugging task, and we recorded their 
work. We then collected developers’ insights by playing back the 
recording for the developer and pausing it to ask them questions 
about key events. Through this method, we gathered data on the 
developers’ navigation decisions and their assessment of expected 
vs. actual values and costs relative to those decisions, as they 
worked on the debugging task. 

3.1 Participants, Procedures, and Task 
Ten professional developers at Oracle participated in the study. 
The participants had 4.5–40 years of professional software devel-
opment experience and 2–19 years of professional experience 
programming with Java specifically. We conducted the study one-
on-one with each participant.   

The sessions lasted no more than 2 hours. At the beginning of the 
session, participants filled out a background questionnaire. They 
then worked for 20 minutes on the debugging task. The task, by 
design, was sufficiently complex that no participant finished it in 
the allotted time. During the debugging task, we prompted partic-
ipants to “talk aloud” as they worked so as to gather data on their 
information goals and intentions of their navigations. We recorded 
participants as they worked, capturing the computer screen, the 
participants’ facial expressions, and their verbalizations. 

The participants’ task was to debug an actual bug (issue #3223) in 
the jEdit open source project. jEdit is a code editor written in Java, 
with code base of 98,652 non-comment lines. The bug was a 
problem with deleting “folded” text in the editor. Participants used 
the Eclipse IDE on a Windows PC to complete the task. We also 
allowed them to use any other tools they wanted to complete the 
task as they saw fit, including using the web.  

After the debugging session, we conducted a retrospective semi-
structured interview. The purpose was to collect participants’ 
expected value before a navigation, and then the value they actu-
ally received. To collect the data, we played the session video for 
the participant, pausing it at each to-method event and away-from-
method event on the video, to ask the questions shown in Fig. 3. 
The to-method pauses occurred just as the participant navigated to 
a Java method (just before arriving there), and the away-from-
method pauses occurred just as the participant navigated away 
from the method (just before seeing the new location). If partici-
pants visited other kinds of files (e.g., properties files), we asked 
them the same questions as for the methods. 

3.2 Qualitative Analysis  
To analyze the data, we used a qualitative coding approach to map 
key concepts (“codes”) to participants’ navigations [39]. Specifi-
cally, we coded the videos (which included both navigation ac-

tions and corresponding verbalizations by the participants) when-
ever participants talked about the value or cost of a navigation. 

For the purposes of this paper, we defined a navigation to a meth-
od to be any occurrence of the Eclipse editor’s text cursor auto-
matically moving to a method, or the participant scrolling to bring 
a method into view while also talking about the method. The des-
tination point of a navigation was a method in the editor. The 
starting point of a navigation was any view in Eclipse from which 
a participant scrolled or clicked to arrive at a method.  For exam-
ple, selecting a search result or a link in an exception stack trace 
would open the corresponding code file in the editor, and place 
the text cursor within the relevant method.  

We coded each navigation for which participants assessed value 
or costs as follows.  First, two researchers iteratively refined the 
code set. Then, using the resulting code set on fresh data, they 
independently coded 20% of the data. Their resulting inter-rater 
reliability was 86% agreement using the Jaccard index (the inter-
section of all applied codes over the union of all applied codes) on 
20% of the data for the value codes, and 81% agreement on 20% 
of the data for the cost codes. Given that rate of agreement, the 
coders then divided up the coding of the remaining data. We detail 
each code set in the Results sections that refer to them.  

4. EMPIRICAL RESULTS  
4.1 RQ1: Developers’ Expectations of Value   
4.1.1 Did They Get the Value They Expected?   
To investigate the participants’ assessments of a patch’s value, we 
used an ordinal scale of measurement. That is, rather than attempt-
ing to quantify their value assessments numerically, we derived 
from their verbalizations simply an “order”: whether they received 
greater, equal, or less value than they had expected.   

To perform this measurement, we coded participants’ responses to 
the retrospective interview questions (Fig. 3). For expected value 
(before they processed the patch), we coded their responses to the 
“to-method” questions, and to measure their perceived actual 
value of the method (after they processed it), we coded their re-
sponses to the “away-from-method” questions. Table 1 shows the 
code set we used to analyze these navigations.   

By these measures, the participants’ expectations of the infor-
mation value they would receive for their foraging efforts were 
optimistic: they expected Necessary or Sufficient information 
from about 84% of their navigations (Table 2’s top two rows’ 
totals). The first row shows navigations in which participants 
expected to find everything they needed (Sufficient: about 25%), 
and the second shows navigations in which they expected to find 
at least something they needed (Necessary: about 59%).  

“To-method” questions: 
• What about location ____ made you go there? 
• What did you expect the content to be at location ____? 
• Did you consider other options? 
• à If yes: What other options did you consider? 
• à If yes: Why did the other options not jump out at you, like 

____? 
• à (If partial list of foraging choices is abandoned) What about 

these options made you not select any of them? 
“Away-from-method” questions: 
• Did you find what you expected at location ____? 
• à If no: What did you find at location ____? 
• What did you learn from location ____? 
• Did what you learned cause you to change your course? 

Fig. 3. Retrospective semi-structured interview questions. 
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However, many of these expectations of value were not fulfilled. 
As Table 2’s bottom row shows, 63 of participants’ 179 naviga-
tions (about 35%) produced lower value than expected. Adding to 
these disappointments, 28 of the 29 “desperation” navigations (not 
expected to be either Necessary or Sufficient)—in which partici-
pants actually expected no value but tried anyway—indeed led to 
no actual value.  Thus, in total, about 51% of participants’ naviga-
tions (highlighted cells in Table 2) ended in some degree of dis-
appointment in the information value they received. 

Participants rarely found more value than they expected.  As Ta-
ble 2’s first column shows, participants found higher information 
value than expected in only 5 navigations, and only one was a 
participant “lucking into” information in a desperation navigation.  

4.1.2 Why: The Challenges of Signposting  
To find out why participants’ efforts so often returned disappoint-
ing value, we analyzed the 63 navigations in which participants 
received less value than expected, from the perspective of IFT’s 
“cues” construct. What we found was patterns of cues (signposts) 
that led participants astray in multiple ways. 

Many of the words in IDEs refer to places in the code (e.g., meth-
od names) and in memory (e.g., variable names), and when they 
are associated with a clickable or easily scrollable way to navigate 
to the place to which they refer, these words serve as cues. Be-
cause cues like this are identifiable by lexically analyzing source 
code, we term them lexical cues. Participants almost exclusively 
used lexical cues—mostly method names—to predict the value of 
a patch to which they were considering navigating.  

Unfortunately, this type of cue often misled them to irrelevant 
patches—even when participants expressed high confidence that 
the patch would be relevant to their information needs. In particu-
lar, three types of problems with lexical cues interfered with the 
participants’ expectations of a patch’s value prior to going there: 
(1) cues that seemed to advertise falsely, (2) synonym cues, and 
(3) cues answering the “wrong” question. 

4.1.2.1 False advertising: Content + where the cue points 
Some lexical cues beckoned participants toward a patch with a 
“false advertisement” of the value. By way of analogy, imagine 

this sign next to a store window: “Buy <brand name> Coffeemak-
ers”.  This sign might be just what a shopper needs if the store 
actually has those coffeemakers, but might lead them astray if it is 
merely advertising the coffeemakers (e.g., sold advertising space). 
Here the falseness of the advertising lies not in the content of the 
sign, but the combination of its content and its apparent associa-
tion with this store. 

At this point, let us briefly consider whether the foundations-
oriented perspective we follow in this paper yields useful insights 
not produced by prior works. For the case of developer naviga-
tions, the results produce a new agenda of research challenges, 
starting with the following: 

Research Challenge #1 (False Advertising): How to reduce 
the problem of cues developers interpret as “advertising” 
prey in a patch that does not, in fact, have that prey. 

The false advertising problem was very common among our par-
ticipants: P2, P4, P7, P8, and P9 all suffered instances of it. For 
example, P8 navigated to method KillRing because “it’s obvi-
ously to do with deletion”. Yet, upon arriving in the method, he 
was quickly disappointed when he realized it did not actually 
perform any of the work of deletion: 

P8 (when asked if he was hoping for something):  
“some more connection to deletion of the actual text... 
[but] it was just the abstraction” 

4.1.2.2 The problem with synonym cues  
Some participants used their knowledge of synonyms to navigate. 
For example, in looking for code that deletes, it seems reasonable 
to also look for code with names that mean the same as “delete”. 
However, synonyms sometimes led our participants astray. P8’s 
KillRing false advertising problem above was exacerbated 
when synonym difficulties also arose. Other examples were: 

P2: “‘clear.bsh’, is that related to deleting? No it’s not”  
P7: “I’m assuming ‘invalidate’ means ‘delete’ ... Uh, it 
just doesn’t delete” 

We were surprised to see the problems that arose with synonyms 
as cues, because several tools use synonyms directly or indirectly  
to good effect (e.g., tools powered by natural language vocabulary 
devices like TF-IDF). For example, the search tool FindConcept 
uses synonyms to expand the search query [41, 45], and Krec uses 
standard English synonyms [36].  
These approaches bring to mind seminal work on what was origi-
nally termed the “vocabulary problem” [14]. That paper showed 
how huge variations in designers’ terminology across numerous 
application domains are an inherent property of the English lan-
guage. This result suggests not only the advantage of automatical-
ly agglomerating synonyms but also its disadvantage—bringing 
together synonym-related patches greatly expands developers’ 
search space, as with P2, P6, and P8 above. Thus, too little syno-
nym agglomeration produces too many false negatives, but too 
much synonym agglomeration produces too many false positives. 

Research Challenge #2 (Synonyms): How to improve develop-
ers’ foraging through synonym-filled code without incurring 
high navigation costs from numerous false positives or false 
negatives. 

The synonyms problem may relate to Ge et al.’s observation that 
over 90% of relevant synonyms are unique to software engineer-
ing [15]. For example, in software, “invoke” is a synonym of “ex-
ecute”, and “instantiate” is a synonym of “create”. They point out 
that tools could use a thesaurus tailored to the lexicon of SE.  Our 

Table 1. Code set for expected (prior to navigating) and actual 
(after navigating) values. 

 Category Definition 

N
ec

es
sa

ry
 ≤

 
Su

ff
ic

ie
nt

 Sufficient  
Participants believed that the navigation will 
(E(V)) or did (V) fully answer their current forag-
ing goal.  

Necessary 
Participants believed the information in the patch 
at the end of the link will be (E(V)) or was (V) 
necessary & related to their current foraging goal. 

Table 2. Participants’ expectations of value vs. actual value. 
Gray cells highlight navigations in which participants had some 

degree of disappointment (50.8% of navigations).  

Actual V 
Expected E(V) V > E(V) V=E(V) V<E(V) Totals 

Necessary and Sufficient n/a 27 
(15.1%) 

17 
(9.5%) 

44 
(24.6%) 

Necessary, but not Sufficient 4 
(2.2%) 

56 
(31.3%) 

46 
(25.7%) 

106 
(59.2%) 

Not Necessary, not Sufficient 1 
(0.6%) 

28 
(15.6%) n/a 29 

(16.2%) 

Totals 5 
(2.8%) 

111 
(62.0%) 

63 
(35.2%) 179 
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results are consistent with this point, but also suggest that the 
problems with synonym cues may extend beyond that solution. 

4.1.2.3 Cues that answered the “wrong” question 
Our participants often used lexical cues, such as method names, to 
try to answer variants of the following foraging question: what 
will that patch do for my goal?  Unfortunately, many of the meth-
od names they encountered were never intended to answer that 
question. Instead, method names generally reflect a method’s 
purpose (“what is this method?”). However, instead of asking 
“what is” questions, participants often asked “where does” ques-
tions, and method names often failed to answer these.   

For example, 7 of our 10 participants (P1, P2, P4, P5, P8, P9, P10) 
ran into trouble foraging for the methods that actually update jEd-
it’s underlying model when a jEdit user performs an editing ac-
tion. For example, while navigating among numerous method 
calls in the stack trace, P10 said: 

P10: “I’m trying to figure out which piece of [method] ac-
tually updates the buffer state” 

Variables raised even harder “where does” questions, and here 
again, lexical cues did not help. For example, P1 was working his 
way up the exception stack trace, trying to understand where 
physicalLine’s value came from. After several navigations 
following the execution flow of the program, he finally arrived at 
a method that did some computations on physicalLine. 

P1: “This is the first place where ... there was some com-
puting of physicalLine, as opposed to just passing it 
along and throwing exceptions.” 

Some systems try to address “where does” problems. For exam-
ple, WhyLine [20] is well-suited for “where does” questions about 
state and variables, and Reacher [24] answers “where does” ques-
tions about methods. However, proof-of-concept tools like these 
need to be investigated in the context of the entire IDE.  Such 
tools require developers to navigate away from the “main” part of 
the environment into other tools and screens, potentially causing 
them to lose context and adding to developers’ costs simply by the 
cost of navigating to other tools. 

Research Challenge #3 (Answering the Wrong Question): 
How to more often answer the “right” question, i.e., the one a 
developer is actually asking in their particular situation, giv-
en their particular context and state of the IDE. 

4.1.3 An Open Problem: The “Value Estimation” 
Problem with Developers’ Navigations   

Table 3 summarizes the research challenges in better supporting 
developers’ attempts to predict patch values before paying the 
cost of navigating to those patches. These research challenges 
come together to reveal a large, open problem space:  

The Value Estimation Problem (Aligning E(V) with V): How 
to help developers more accurately predict the value they will 
gain from planned navigations—without bearing the cost of 
navigating among a plethora of special-purpose tools.  

The challenges identified so far in this paper show that this prob-
lem is nuanced, difficult, and multidimensional. Even so, address-
ing this problem promises high rewards. Recall from Table 2 that 
solving this problem could potentially improve developers’ navi-
gation efficiency by up to 51%. 

4.2 RQ2: Developers’ Expectations of Cost  
4.2.1 Did Participants Incur the Costs Expected? 
Participants did not verbalize their expectations of cost before 
navigating so we did not measure E(C) and C separately. Instead, 
we measured how E(C) related to C, because after navigating they 
often verbalized a navigation’s cost exceeding their expectations 
(C > E(C)). Thus, our code set (Table 4) allocated these verbaliza-
tions among the two possible ways costs can be incurred: by navi-
gating between patches (Cb), or by processing within the patch 
once there (Cw). Thus, C = Cb + Cw. The results in Table 4 show 
that participants discussed facing unexpected costs in 66 of the 
179 navigations analyzed (36.9%).  

4.2.2 Why: Unanticipated Costs between Patches 
Although there were several instances of unexpectedly high with-
in-patch costs Cw (about 13% of the navigations), those can be 
summarized as simply being time-consuming to understand: 

P1: “Uh, the whole thing was really frustrating. The code 
was hard to read.” 
P5: “looking for ... but then I got so lost in [that method], 
that I didn’t really fully understand what was going on.” 

However, the dominant type of unexpected cost was between-
patch, Cb, affecting over 25% of participants’ navigations.  

 
Table 4. Frequency of actual costs (Cb or Cw) that were unexpectedly higher than the developers had expected (E(Cb) or E(Cw)). 

(The total is 66 instead of 80 because categories can co-occur in the same navigation.) 
Category Definition Examples Navigations affected 

Complexity of 
patch (Cw) 

Participants decided that the cognitive difficulty of 
this patch was unexpectedly high. 

Can’t understand comments/ documentation. 
Code too long. 
Can’t figure out what the code is doing. 

24 (13.4%) 

Surrounding 
context (Cb) 

Participants decided  they would now need additional 
information found only in other patches before they 
could gain value from this one. 

Don’t know how to use this code “correctly” without 
visiting other patches. 

Don’t know what the identifiers represent. 
Don’t know how this code relates to or affects other code. 

46 (25.7%) 

Time 
(Cb or Cw) 

Participants decided (for unspecified reasons or for 
reasons other than the above) that the cost of this 
patch is too high. 

Not enough time to process the patch. 10 (5.6%) 

Total: 66 (36.9%) 
 

Table 3. Research challenges with value estimation E(V).  

Research Challenge Participants who  
encountered it 

#1: False advertising (content + where) P2, P4, P7, P8, P9 
#2: Synonym false positives P2, P7, P8  
#3: Cues answering the “wrong” question P1, P2, P4, P5, P8, P9, P10 
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For between-patch cost Cb, we identified three patterns that the 
participants faced that repeatedly led to unexpectedly high costs: 
(1) the prey was in pieces scattered among multiple patches, (2) 
the path to the prey was long with no end in sight, and (3) some-
times there simply was no available path to the prey. 

4.2.2.1 Prey in pieces, scattered among multiple patches 
Having prey in pieces spread over multiple patches made foraging 
costlier than expected because participants had to locate all the 
relevant patches and assemble the prey themselves. Using the 
coffeemaker analogy from before, this would be like buying a 
coffeemaker in parts, with a different store exclusively selling 
each part. To get a working coffeemaker, one would have to go to 
one store to get a handle, another to get the glass container, yet 
another to get a lid, and so on, only to then also assemble the 
gathered components before brewing any coffee.  

Research Challenge #4 (Prey in Pieces): How to better sup-
port developers who are having to assemble prey that is in 
pieces scattered among multiple patches. 

One situation in which participants had to collect and assemble 
information from multiple patches was when they tried to learn 
semantic information, such as what a variable represented. For 
example, P1, P3, P6, P7, and P9 were confused by all of the dif-
ferent line variables. Documentation for the semantic differences 
between the variables existed within comments in the code, but 
participants sometimes needed a combination of knowledge from 
several patches to understand the different variables.  

P5: [Did you consider any other choices besides <method 
name>?] “No, because the names didn’t really say much 
to me ... I basically had no clue about context...” 

To illustrate the cost involved in establishing such context, con-
sider P1’s case. As Fig. 4 shows, for P1 to build the context he 
wanted, he would have had to not only move up the call stack to 
find the relevant relationships and documentation, but also had to 
locate and navigate through the call relationships through the 
dashed methods in the figure before putting together his desired 
prey. Of course, P1 had no way of knowing this, and after forag-
ing within the first four methods of the call stack, he gave up. 

Several other participants faced similar difficulties when they 
wanted to understand where and how the value of a variable 
changed during execution. P1, P3, P6, and P10 all navigated be-

tween several methods that executed during the Delete Line action 
to determine how specific values of variables changed. One ex-
ample was the physicalLine variable. To understand where 
physicalLine came from, participants navigated up the call 
hierarchy and identified patches where physicalLine was 
being modified only to reach a method that showed that physi-
calLine was calculated using a screenLine as a parameter. 
Then they had to navigate through another call hierarchy. With 
each additional variable, there was yet another call hierarchy to 
investigate, and the number of patches to investigate grew rapidly. 
Eventually, all four of these participants decided the cost was too 
high, and gave up. 

4.2.2.2 The path to the prey is too long, with no end in sight 
In contrast to the above, with the prey being scattered about in 
pieces, some participants’ prey were already fully assembled and 
in only one patch—but the path was so long, participants thought 
they were going in the wrong direction and gave up.  
Returning to the coffeemaker analogy, imagine entering a store 
searching for a coffeemaker, but having the clerk tell you they do 
not sell them, but they can point you to a store that might. Then, 
upon entering that store, having that clerk send you to yet another 
store. Eventually, you might get to a store with the coffeemaker, 
or you might give up before you get there because with each trip 
to a new store, it seems less and less likely that any of the stores 
has a coffeemaker available. Several participants engaged in this 
behavior of going from patch to patch, until finally giving up.  

Research Challenge #5 (Endless Paths): How to better sup-
port developers when the path to the prey is very long, so that 
the developer does not erroneously decide that the prey is not 
on that path. 

For example, when P3 was looking for methods related to folding 
or deleting text, he set a breakpoint in the exception-throwing 
method that he identified earlier. He then foraged through the 
sequence of methods in the debugger’s stack frames working his 
way down the stack, sometimes returning to a previous frame to 
regain lost context. After several navigations, he gave up—still 
three methods away from the deleteLine method that he was 
looking for (Fig. 5). P1, P2, P3, P4, P5, P8, and P9 all experienced 
this expense of navigating through long sequences of patches en 
route to their desired prey. 

4.2.2.3 Sometimes there is no path 
Some participants could not find a path to their prey because the 
information they wanted was located in a different topology alto-
gether. A topology is a collection of patches and the links between 
them. In this study, one topology was the code itself, with units of 
code (such as methods or classes) being the patches and the ways 
to navigate between them (like scrolling or using various IDE 

 
Fig. 4. P1 was looking for the relationship between screen lines 
and visible lines, after seeing both in the starred method. But 

jEdit has three line types, so he would have also needed to under-
stand physical lines from the dashed locations (far right).  

 
Fig. 5. P3 navigated down the debugger’s stack frames 

searching for methods related to folding or deletion. After 
several navigations down the stack, he gave up only three 

methods away from the method he was looking for.  
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navigation affordances) being the links. Another topology, dis-
joint from the code topology, was the jEdit running instance, with 
its own patches and navigation affordances not connected to code. 
In the Eclipse IDE, participants sometimes formulated a foraging 
goal while in one topology, but had to fulfill the goal in another. 
What was missing was a way for participants to easily navigate 
between related patches from one topology to another. 

Research Challenge #6 (Disjoint Topologies): How to enable 
developers to navigate through related patches among multi-
ple, disjoint topologies.  

This inability to move between topologies in a low-cost way pri-
marily manifested when participants were mapping runtime GUI 
behavior to code. For example, several participants, while recreat-
ing the bug in jEdit’s running instance, formulated the goal of 
finding the code that was triggered by GUI actions. However, 
after formulating that goal, they then had to switch over to jEdit’s 
code and start a fresh set of navigations, since there was no direct 
way to go from executing the action in jEdit to the code that han-
dles that action. Instead, participants located the relevant code by 
using search tools, by investigating the stack trace, or by setting a 
breakpoint and stepping through code. Fig. 6 shows one common 
missing link between the two topologies, mapping the Delete 
Lines menu action to the deleteLine method. 

In the above situation, participants had to resort to finding the 
relevant representations of GUI elements in the code by navi-
gating through code, which was both costly and unfruitful. P3 set 
a breakpoint and then navigated through several frames trying to 
find information. P4 chose to trigger an action related to the bug 
and step through several methods of code to find relevant prey. P5 
simply selected a relevant-looking method from the outline view 
and started to read code.  

For jEdit, there were four disjoint topologies: the GUI runtime, 
the source code, the external menu library, and the XML proper-
ties file. Besides the GUI runtime topology and source code to-
pology, jEdit uses an external library—the third topology—to 
automatically build menus based on the content of an XML prop-
erties file—the fourth topology disjoint from the others. The prop-
erties file defined the content of the menus and specified which 
methods to fire for each menu item. The disjointness was a source 
of confusion for participants, since many of the methods that were 
called by menu items had no callers when an open call hierarchy 
action was used in Eclipse. 

There are a few beginnings toward addressing the disjoint topolo-
gies challenge.  For example, Whyline [20] builds a path just-in-

time to bridge the gap between two topologies: from GUI output 
to its relevant source code, and SketchLink [3] links sketches to 
code. Mining approaches like Chen and Grundy’s [5] are also 
emerging to find relationships among disjoint topologies such as 
documentation and source code. However, Whyline does not scale 
to a program of jEdit’s size, approaches like Chen/Grundy’s do 
not support navigations per se, and few of the approaches we have 
located handle more than two disjoint topologies. Still, these ap-
proaches provide promising starts upon which to build. 

4.2.3 An Open Problem: The “Cost Estimation” 
Problem with Developers’ Navigations    

At Table 4 showed, about 37% of developers’ costs were much 
higher than they had expected. In essence, developers had to navi-
gate to patches without knowing what it would cost until after 
they had paid—a situation not unlike writing a blank check for the 
coffeemaker of our earlier analogy. Table 5’s summary of cost-
related foraging research challenges contributing to these issues 
reveals a substantive and difficult open problem space analogous 
to the Value Estimation Problem presented in Section 4.1: 

The Cost Estimation Problem (Aligning E(C) with C): How to 
enable developers to more accurately predict the foraging 
costs they will incur before they incur them.  

5. RQ3: LITERATURE ANALYSIS  
To answer our third research question, whether recent trends in 
software engineering research have begun to address these 
problems, we conducted a literature analysis of 302 papers from 
three literature repositories. The first repository was the 99 papers 
cited in the most recent (2013) journal paper surveying SE tools 
that contribute to developers’ information foraging [12], which 
included, for example, tools helping collect information for 
debugging, reuse, or infering what a developer seeks, and for 
recommending appropriate resources (e.g., [6, 20, 36, 38]).  The 
2013 journal paper [12] sampled literature from a wide range of 
dates, so to ensure currency, we added two very recent 
repositories. Thus, the second repository was FSE’14 (104 
papers), which was the most recent FSE available at the time we 
began this analysis, and the third was ICSE’14 (99 papers), i.e., 
the same year as the FSE repository.  

5.1 Analysis Methodology  
From the resulting 302 papers, we selected for detailed analysis 
all papers that met the following criteria: (1) it must describe a 
tool that supports a software engineering foraging activity, (2) the 
activity must have a before-navigation and an after-navigation 
state, and (3) the paper (or related resources) must include infor-
mation of the navigation choices a developer can make.  

We then qualitatively coded the 55 papers that met these criteria 
based on the description of the foraging activity supported by the 
paper’s tool (or by following references in the paper to other re-
sources describing the tool), using the code set given in Table 6. 
As the table shows, the codes cover every possible way to align 
value V with E(V) if V<E(V), and to align cost C with E(C) if 
C>E(C) for the two factors of C, namely Cb and Cw.  

 
Fig. 6. P7 said he wanted to navigate from the Delete Lines 
menu action to the deleteLines code, but the environ-
ment had no link from the action to the code it triggered. 

(Solid lines: links present. Dashed line: missing link.) 

Table 5. Research challenges for cost estimation E(C).   
Research Challenge Participants who encountered it 

#4: Prey in pieces scattered 
among several patches 

P1, P3, P4, P5, P6, P7, P9, P10 

#5: Path too long, no end in sight P1, P2, P3, P4, P5, P8, P9 
#6: No path across different to-
pologies 

P1, P2, P3, P4, P5, P6, P7, P8, P9, 
P10 
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To ensure reliability of our analysis, we followed the same inter-
rater reliability (IRR) practices we described for the other code 
sets in this paper. Specifically, two researchers independently 
coded the same 20% of the data, and calculated their level of 
agreement using the Jaccard index. After achieving 90% inter-
rater reliability on the first repository and 81% on the remaining 
two, they divided up the coding of the remaining data.  

5.2 Results  
Table 7 presents the results of our analysis of the 55 SE research 
tools. As per the underlying code set (Table 6), Table 7 has a col-
umn for every possible way a tool could improve developers’ 
mismatches in actual versus expected value or cost, and shadings 
show which tools contributed to each.  

A visual scan of the shaded cells in Table 7’s columns 3–8 reveals 
four results. The first is good news regarding SE research’s com-
mitment to enhancing the value and cost of developers’ infor-
mation seeking—100% of the 55 tools make some kind of 
contribution to helping developers with aspects of value or cost.  

5.2.1 Improving the Actuals: V and C  
The second result, shown by Table 7’s columns 3–5, is that most 
of these tools (47/55=85%) are working toward improving 
developers’ actual value V or cost C.  

More specifically, Table 7’s column 3 (“Increase V”) shows that 
just over half of these 47 papers (26) work toward increasing the 
value V a patch delivers to developers who make their way there. 
These tools do so by adding information features to that patch.  

One example is SketchLink [3], which adds sketch diagrams rele-
vant to the current method (Figure 7)—which increases V provid-
ed that these added information features help to answer the ques-
tion(s) the developer actually had, as per Research Challenge #3 
(answering the wrong question). When that provision is met, a 
best case is that value V to a developer might increase from neces-
sary up to sufficient. This best-case increase could help with Ta-
ble 2’s result that developers’ navigations did not usually produce 
value that was sufficient.  

Turning to the next two columns, work to reduce costs dominates 
the “actuals”—47 papers contribute toward decreasing Cb and/or 

Cw. All except one of these 47 focuses on decreasing cost Cb of 
navigating to a patch, but over half (29) focus also (or in one case, 
instead) on the cost Cw of navigating within that patch.  

For example, SketchLink [3] (Fig. 7) reduces Cw by making ex-
plicit information the developer would otherwise need to infer by 
studying the code. It also reduces Cb by adding links between two 
disjoint topologies, sketches and code, as per the two-topology 
case of Research Challenge #6 (disjoint topologies).  

5.2.2 Aligning Expectations: E(V) and E(C) 
Improving actual V and C is important, but it still leaves an im-
portant gap—it does not resolve the waste than ensues if develop-
ers cannot predict in advance whether they will receive value until 
after they pay the cost. This is why aligning E(V) and E(C) with V 
and C, respectively, matters. 

The third result is about this alignment. At first, Table 7 gives an 
impression visually that aligning E(V) with V is very common 
among these tools, with 52/55 (95%) making some effort to do so. 
However, this impression is a bit misleading, because most ap-
proaches help developers predict patch values only for patches 
that are nearby (one navigation away), a point we shall return to 
shortly. Still, one excellent example of support of E(V) is Team 
Tracks [9], which helps developers predict value by rating patches 
according to how often the developer’s team visited them (Figure 
8, left), regardless of how many navigations away the patch is. 

Table 6. Code set for the literature analysis.  E(V) = expected 
value, E(C) = expected cost. V = actual value, C = actual cost. 

 Code Description 
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Aligns accuracy of  
E(V) with V. 

Prior to a navigation, a cue hints at the 
value of information at the end of the link. 

Aligns accuracy of 
E(Cb) with Cb of 
navigating between 
patches. 

Prior to a navigation, a link gives clues (via 
the cues) as to the cost of navigating to the 
patch at the end of the link. 

Aligns accuracy of 
E(Cw) with Cw of 
processing within a 
patch. 

Prior to a navigation, a link gives clues (via 
the cues) as to the cost of processing a 
patch (e.g., context, complexity, time). 
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tu

al
 

Increases V of a patch The patch has been modified to increase its 
value, either by adding relevant information 
or removing irrelevant information. 

Decreases Cb of be-
tween-patch foraging 

Developers can navigate to a desired patch  
more quickly. 

Decreases Cw of 
within-patch pro-
cessing 

After a navigation, the patch itself has been 
modified to decrease its processing costs, 
either through the removal of irrelevant 
information features or by drawing atten-
tion to relevant information features. 

 
Fig 7. SketchLink improves V, Cb, & Cw in overlapping ways: 
Increasing V: It adds information (the floating sketch) about 
the current method.  
Decreasing Cb: Developers can get the sketch without a tedi-
ous sequence of navigations.  
Decreasing Cw: Developers need not study the code to infer 
information the sketch makes explicit. 
 

 
Fig 8. Team Tracks’ support for both E(V) and E(Cw): 

(Left) Aligning E(V) with V: Shows how often fellow team 
members visited it as an estimate of value V. 
(Right): Aligning E(Cw) with Cw: If a developer selects a 
method, it shows a preview, helping developers predict how 
long they will spend understanding the method.  
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Table 7. Results of analyzing 302 papers, showing the 55 tools that assist developers with tasks involving foraging. Shaded = some 
support, blank=none, ? = unclear in the paper. Citations are in ICSE’14/FSE’14 if indicated; otherwise, see [12] for full citations. 
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Alimadadi et al. … JavaScript … ICSE 2014 Understand interaction between source code components.       
Alves et al., RefDistiller… FSE 2014 Locate potential errors caused by manual refactoring.       
Ashok et al. DebugAdvisor …2009 Locate relevant information associated with a bug. 	 	 	 	 	 	
Baltes et al. Linking sketches … FSE 2014 Locate/link sketches/diagrams relevant to part of the code.       
Bragdon et al. Code Bubbles … 2010 Locate and visually organize code. 	 	 	 	 	 	
Caldiera et al. … reusable software… 1991 Locate reusable code. ?	 ?	 ?	 	 ?	 	
Coblenz et al. JASPER… 2006 Collect relevant code in a separate, easy-to-navigate patch. 	 	 	 	 	 	
Cottrell et al. …source code reuse…. 2008 Locate reusable code. 	 	 	 	 	 	
Cubranic et al. HIPIKAT… 2005 Locate artifacts relevant to the current context. 	 	 	 	 	 	
De Alwis et al. …Ferret. 2008 Locate and collect code based on developer’s query. 	 	 	 	 	 	
DeLine et al. … sharing navigation data. 2005 Find relevant code via team members’ navigation histories. 	 	 	 	 	 	
Duala-Ekoko et al. … code clones… 2007 Locate and collect code clones for modification. 	 	 	 	 	 	
Ducasse et al. … duplicated code. 1999 Locate duplicated code. 	 	 	 	 	 	
Dudziak. … structural weaknesses …. 2002 Locate potential bad code via code smells. 	 	 	 	 	 	
Dunn et al. … reusable parts... 1993 Locate reusable code. ?	 ? ?	 	 ?	 ?	
Fritz et al. information fragments … 2010 Locate/organize code collaborated on by several developers. 	 	 	 	 	 	
Galenson et al. CodeHint… ICSE 2014 Find code snippets that meet the requirement/specification.       
Ge et al. Manual refactoring … ICSE 2014 Locate and/or fix errors caused by automated refactoring.       
Henninger. … find reusable software. 1994 Locate reusable code. 	 	 	 	 	 	
Hermans et al. BumbleBee… FSE 2014 Locate source code files that may contain the bug.       
Hill et al. NL-queries for software … 2009 Locate relevant program elements based on NL-queries. 	 	 	 	 	 	
Holmes et al. … context matching… 2006 Locate examples for a particular source code element. 	 	 	 	 	 	
Holmes et al. … pragmatic reuse tasks. 2007 Organize and annotate code fragments during reuse tasks. 	 	 	 	 	 	
Kaleeswaran et al. MintHint… ICSE 2014 Identify changes needed to a fix a buggy piece of code.       
Kersten et al. …task context … 2006. Collect relevant code in a separate, easy-to-navigate patch. 	 	 	 	 	 	
Ko. Asking and answering questions… 2008 Locate code that caused a particular output. 	 	 	 	 	 	
Lanubile et al. Function recovery … 1993 Reverse-engineer components. 	 	 	 ?	 	 	
Layman. Information needs … 2009 Identifies code relationships for a given code element. 	 	 	 	 	 	
Lin et al. Detecting differences… ICSE 2014 Locate clones and identify similarities and differences.       
Manotas et al. SEEDS… ICSE 2014 Identify possible changes for more energy-efficient code.       
McMillan et al. Exemplar…2012 Locate relevant software projects based on NL-query. 	 	 	 	 	 	
Mens et al. Beyond the refactoring … 2003 Locate potential bad code via code smells. 	 	 	 	 	 	
Minto et al.. … emergent teams. 2007 Locate an expert for a given section of code. 	 	 	 	 	 	
Mirakhorli et al, Archie… FSE 2014 Find code that matches a certain architectural pattern.       
Mockus et al.. Expertise browser… 2002 Locate an expert for a given section of code. 	 	 	 	 	 	
Ocariza et al. Vejovis… ICSE 2014 Identify possible changes to fix a buggy piece of code.       
Okur et al. … in C#. ICSE 2014 Identify fixes to bugs with asynch. programming constructs.       
Olivero et al. … object-focused … 2011 Locate and visually organize code. 	 	 	 	 	 	
Parnin et al. … usage contexts … 2006 Locate and recommend context-relevant code. 	 	 	 	 	 	
Reiss. Semantics-based code search. 2009 Locate code based on developer-supplied specification. 	 	 	 	 	 	
Schiller et al. … specifications. ICSE 2014 Identify formal behavioral specifications & document them.       
Simon et al. Metrics based refactoring. 2001 Locate code suitable for refactoring via code smells. 	 	 	 	 	 	
Storey et al. … waypoints… 2007 Locate code tagged with user-determined categories. 	 	 	 	 	 	
Subramanian et al. Live API … ICSE 2014 Understand what code does via documentation & examples.       
Thung et al., BugLocalizer… FSE 2014 Locate the files that may potentially contain the bug.       
Tokuda et al. … object-oriented … 2001 Locate code for refactoring. 	 	 	 	 	 	
Toomim et al. Managing duplicated … 2004. Locate code duplicates. 	 	 	 	 	 	
van Emden et al. Java quality … 2002 Locate bad-smelling code. 	 	 	 	 	 	
Wursch et al. … natural language .... 2010 Locate code based on NL-queries. 	 	 	 	 	 	
Xiao et al. Titan… FSE 2014 Find relationships between classes.       
Ye, Y et al. … active information … 2000 Locate code for reuse. 	 	 	 	 	 	
Ye, Y et al. A socio-technical … 2007 Locate an expert for a given section of code. 	 	 	 	 	 	
Zhang et al. … configuration … ICSE 2014 Locate/fix configuration-related errors in a newer version.       
Zhang et al. Critics… FSE 2014 Identify code where similar systematic changes occurred.       
Zimmermann et al. Mining version … 2004 Recommend code needing modification. 	 	 	 	 	 	
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The fourth result Table 7 reveals is that tools helping to align E(C) 
with C were relatively rare—only 4/55 (7%) made any attempt to 
align E(Cb) with Cb, and only 10/55 (18%) worked to align E(Cw) 
with Cw. As an example of supporting E(Cw), when developers 
using Team Tracks select an item in the list Team Tracks recom-
mends, it shows a preview (Figure 8, right), to help developers 
predict the cost of understanding the code. However, as with the 
E(V) work, few tools handle patches that reside more than one 
navigation away. 

5.3 The Scaling Up Problem 
Section 5.2’s examples provide useful ideas toward ultimately 
addressing some of the research challenges of Section 4, but only 
a few help the developer align E(V) with V or E(C) with C for 
patches more than one click away. This leaves the developer in a 
state of acute myopia (near-sightedness), unable to see beyond 
one navigation away—and thus unsupported in coping with long-
distance problems such as those illustrated by Figures 4 and 5. 
This suggests our third and final open problem space: 

The Scaling Up Problem (More than one click away): How to 
enable developers to accurately predict value/cost of multiple 
“distant” patches (i.e., more than one navigation away).  

Fortunately, our literature analysis points to a few notable starts in 
this direction.  Besides the examples above, other examples are 
MCIDiff [28] and CloneTracker [11]. These two clone-tracking 
tools consider the possible set of clones, show the length and the 
number of instances of all code clones, not just nearby ones, to 
help the developer predict E(Cw) of handing any or all of these 
clones. Another useful example is the query system Ferret [7], 
which helps developers predict E(Cw) beyond the one-click-away 
distance. Ferret allows developers to ask conceptual queries about 
a particular program element such as “What methods instantiate 
this type?” and while displaying the results, also shows the num-
ber of results for the query, thus allowing the developer to gain 
some idea of the sum of all the E(Cw)s they will incur.  Promising 
starts like these works can serve as the ground floor upon which 
SE researchers can build toward ultimately addressing this prob-
lem.  

6. THREATS TO VALIDITY  
Every study has threats to validity. We guarded against threats to 
internal validity in several ways. For our empirical study, our 
inter-rater reliability was 81%–92% on all code sets, helping to 
assure construct validity (the extent to which a measure actually 
captures what is intended). To further help assure construct validi-
ty, we did not rely on our raters’ interpretations alone, but also 
used retrospective interviews to remind participants where they 
were and also to gather participants’ interpretations of which 
events mattered and why they did what they did. However, partic-
ipants’ recollections of what happened later may have biased their 
responses. 

The primary threat to external validity of the empirical study is 
that our study participants were new to the code base. This is a 
common situation for new hires and when developers transfer to 
different development teams, but we do not expect it to generalize 
to other kinds of debugging situations. Additionally, there is a 
question of generalizability to other programming languages and 
IDEs, which we defer to future work.  

For our literature analysis, we also had good inter-rater reliability, 
with 81%–90% on 20% of the data. However, a threat to external 
validity is that our sampling of current SE trends may not be com-
plete. Our analysis covered 302 papers from top publication ven-

ues, but these SE literature repositories still may not generalize 
across all SE literature.  

7. CONCLUDING REMARKS 
In this paper, we used an Information Foraging Theory perspec-
tive to investigate developers’ navigation decisions, how often 
these decisions led to disappointment, and the fundamentals of 
why. The results suggest that how well a developer can predict the 
value and/or cost of a navigation path are critical factors of the 
lower bound of a developer’s navigation efficiency in a given 
information space. The results further suggest a new area of in-
quiry for SE researchers: how large, feature-dense SE environ-
ments can support developers’ ability to predict the value they 
will receive from a navigation path and the cost they must expend 
to receive that value. As Sections 4–5 showed and Table 8 sum-
marizes, this area of inquiry appears to be rich, challenging, and 
cross-cutting, with three open problem spaces involving (at least) 
six research challenges. 

Our empirical study showed these problems to have significant 
effects on developers’ productivity, with high percentages of ex-
pensive wasted developer effort. For example, about 51% of the 
developers’ foraging decisions led to disappointing value of in-
formation obtained, and about 37% of the developers’ foraging 
decisions resulted in higher than anticipated costs. Conservatively 
assuming that all value and cost foraging disappointments over-
lapped, about 51% of their foraging resulted in disappointment; a 
worst-case summation that assumes no overlap in these disap-
pointments is 88% of their navigations leading to disappointment.  

Further, our literature analysis revealed only a little evidence of 
SE research tools that aim squarely at helping developers to align 
their predicted navigation value and cost with the actual values 
and costs they will incur. Fortunately, a few such tools make use-
ful inroads in directions needed to help address the issues, as we 
pointed out in the literature analysis.  

Together, these results are a call for action. Developers’ future 
productivity will depend on SE researchers’ ability to make sig-
nificant progress toward solving the open problems and challeng-
es that were revealed by considering developer navigation at a 
foundational level.  

P8: “... really hard … it’s just, you know, miles of meth-
ods, miles of methods.” 
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Table 8: Summary of open research problems and challenges. 

Open Research Problems and Challenges Described in... 

The Value Estimation Problem Section 4.1.3 
Research Challenge #1: False advertising Section 4.1.2.1 
Research Challenge #2: Synonyms Section 4.1.2.2 
Research Challenge #3: Answering “wrong” question Section 4.1.2.3 

The Cost Estimation Problem Section 4.2.3 
Research Challenge #4: Prey in pieces  Section 4.2.2.1 
Research Challenge #5: Endless paths Section 4.2.2.2 
Research Challenge #6: Disjoint topologies Section 4.2.2.3 

The Scaling Up Problem Section 5.3 
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