

978-1-5386-0443-4/17/$31.00 ©2017 IEEE

Foraging Goes Mobile:
Foraging While Debugging on Mobile Devices

David Piorkowski1, Sean Penney2, Austin Z. Henley3, Marco Pistoia1, Margaret Burnett2, Omer Tripp4* , Pietro Ferrara5*
1IBM Research

Yorktown Heights, NY, USA
david.piorkowski@ibm.com

pistoia@us.ibm.com

2Oregon State University
Corvallis, OR, USA
{penneys, burnett}

@eecs.oregonstate.edu

3University of Memphis
Memphis, TN, USA

azhenley@memphis.edu

4Google
New York, NY, USA
trippo@google.com

5Julia SRL
Verona, Italy

pietro.ferrara@juliasoft.com

Abstract—Although Information Foraging Theory (IFT) re-
search for desktop environments has provided important in-
sights into numerous information foraging tasks, we have been
unable to locate IFT research for mobile environments. Despite
the limits of mobile platforms, mobile apps are increasingly
serving functions that were once exclusively the territory of
desktops—and as the complexity of mobile apps increases, so
does the need for foraging. In this paper we investigate, through
a theory-based, dual replication study, whether and how forag-
ing results from a desktop IDE generalize to a functionally sim-
ilar mobile IDE. Our results show ways prior foraging research
results from desktop IDEs generalize to mobile IDEs and ways
they do not, and point to challenging open research questions
for foraging on mobile environments.

Keywords—information foraging theory; mobile software de-
velopment

I. INTRODUCTION
Mobile devices are slowly taking over functionalities that

once were possible only on desktop/laptop computers. Be-
sides traditional mobile apps such as text messaging, access-
ing email, and navigation, mobile devices now allow complex
applications such as document readers, text editors, spread-
sheets, and even integrated development environments
(IDEs). Where there is a complex information space (such as
with programming), there is likely to be foraging, that is, in-
formation seeking behavior. However, we have been unable
to locate research into how people forage on mobile devices,
especially in the context of a complex information space like
using a mobile IDE to debug a mobile app.

The very idea of using an IDE on a mobile device, such
as a smart phone or tablet computer, may seem strange at first,
because the amount of information a user must deal with may
seem too complex to be displayed properly on the screen of a
mobile device. However, in recent years, new IDE tools have
become available that allow developers to write and debug
mobile apps directly on mobile devices (e.g., [46]). This al-
lows a tight coupling between editing and running, which af-
fords liveness in mobile programming [4, 5, 26, 45, 48].
Liveness in turn supports rapid development, testing, debug-
ging, configuration and deployment of mobile apps “on the
go” without the need for emulators. According to one study,
programmer productivity is significantly enhanced when de-
velopers are offered the opportunity to write mobile applica-
tions directly on mobile devices—particularly when writing
small applications [29].

Perhaps programmers of larger mobile applications could
also reap such benefits, if their foraging was supported on
mobile devices. Thus, in order to investigate where foraging
a complex information space on a mobile platform is the same
and where it differs from desktop foraging, we conducted a
dual replication study. Mobile and desktop platforms are dif-
ferent, so our study is the type known as a conceptual repli-
cation, which “test<s> the same fundamental idea or hypoth-
esis behind the original study, but the operationalizations of
the phenomenon, … may all differ” [9] (italics added). For
our case, the fundamental idea was information foraging in
IDEs. As we shall see, IFT’s theoretical constructs were crit-
ical to our ability to replicate and compare findings across
different platforms.

The first study we replicated investigated the interplay be-
tween learning and “doing” in desktop programmers’ forag-
ing [35]. When foraging through code, programmers some-
times need to learn about code they have stumbled upon, and
sometimes they need to change the code they are in. The two
goals are intertwined, but Minimalist Learning Theory
(MLT) [11] predicts that the learning part of such tasks is
sometimes given less attention than the doing (changing)
part. Our replication study investigates to what extent the
findings of learning vs. doing in a desktop IDE [35] general-
ize to mobile IDEs:

RQ1: Do desktop-based findings about production bias in in-
formation foraging generalize to a mobile environment?

RQ2: If so, in what ways do these findings generalize? When
they do not generalize, why not?

To delve more deeply into the results of RQ1 and RQ2,
we also replicated another desktop study [36] that had itself
been a partial replication of the main study in that it used the
same platform and study type. That study had derived a set of
research challenges for supporting desktop programmers’
foraging efforts that might help to explain our RQ1 and RQ2
results. Therefore, we also investigated whether those re-
search challenges were the same for a mobile environment:

RQ3: In what ways do research challenges for supporting
desktop foraging generalize to a mobile environment?

II. BACKGROUND AND RELATED WORK

Our investigation is framed by Information Foraging The-
ory (IFT). IFT provides a conceptual framework for explain-
ing how people in an environment seek information.
material are those of the authors and do not necessarily reflect the views of
NSF, DARPA, the Army Research Office, or the US government.

*All of this author’s contribution to this work took place while the author
was employed by IBM Corporation at IBM’s TJ Watson Research Center.

This work was supported in part by NSF under Grants 1302113, 1302117,
and 1314384 and by DARPA under Contract N66001-17-2-4030. Any
opinions, findings and conclusions or recommendations expressed in this

2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

9

The main constructs of IFT are a predator (a human seek-
ing information) and prey (the information the predator is
looking for) [37]. The predator forages through an infor-
mation environment consisting of patches (areas containing
information) and navigates between patches via links (con-
nections between the patches). Each patch contains infor-
mation features, which may contain the prey the predator is
looking for. Some information features are cues: information
features that have a link. Cues inform the predator of what
information lies in the patch at the other end of the link. Fig.
1 illustrates these concepts, and Table 1 summarizes them.

Predators build scent by assessing cues in the
environment. This assessment of cues is central to IFT’s main
proposition, which says that the predator treats foraging as an
optimization problem. More specifically, according to IFT,
the predator’s foraging actions try to maximize the value V of
information they will gain from a patch per their cost C of
getting to and interacting with that patch, i.e., max(V/C).

However, since predators do not have perfect information
about a patch’s value and cost, they make their choices based
on their expectations E of value V and of cost C, i.e.,
max(E(V)/E(C)). The predator bases such expectations on
whatever information they have gathered so far, such as by
inferring them from available cues.

However, information seeking is often not the main task,
but rather a necessity to complete another task. These situa-
tions are well described by Minimalist Learning Theory
(MLT) [11]. MLT explains motivations and behavior of “ac-
tive users”— people in situations where learning is motivated
solely by another task. According to MLT, active users’ focus
on throughput (finishing their task as quickly as possible)
leads to a motivational paradox named production bias. This
paradox describes how active users’ focus on throughput re-
duces their motivation to spend time learning about the task,
even if doing so might help them complete the task. Several
studies have reported programmers behaving in this “active
user” fashion, in which they favor “doing” over learning [3,
18, 23, 40]. In this paper, we investigate how IFT and MLT
come together for programmers in mobile vs. desktop IDEs.

IFT alone (without MLT) has been studied in a variety of
desktop computing settings, most commonly Web foraging
[6, 7, 12, 8, 14, 38, 42] and foraging in desktop programming
environments [3, 16, 17, 19, 20, 21, 44]. The latter group is
the most relevant to our current study.

In desktop programming, IFT has been able to model pro-
grammers’ foraging to predict programmer navigation [19,
21, 32, 41], to understand developers’ goals and strategies
[33], to explain how tools affect programmers’ navigation be-
haviors [16], to identify cues in Web mashups [17], to im-
prove requirements-tool tracing [31], and to explain program-
mers’ foraging behavior among code with multiple variants
[44]. These and similar studies have led to IFT-informed ap-
proaches to support programmers’ foraging [13, 27, 30, 34].

On the other hand, for mobile programming, research on
building mobile IDEs is still emerging. Among the IDEs for
a mobile device is TouchDevelop [46, 47]. TouchDevelop
has been used to build a variety of applications, particularly

games for smartphones and tablets [2]. There is also emerging
work on providing higher-level “programming” environ-
ments that allow stitching Web services together [10] and on
providing scaffolding for new Java programs [25]. Develop-
ers have also built programming tools for mobile devices, and
a number of mobile IDEs are now available on the Google
Play Store (https://play.google.com) (e.g., AIDE, Terminal
IDE, CppDroid, AWD, DroidScript, Anacode IDE, Deuter-
IDE, AIDE Web, APDE, and C++ Compiler IDE).

So far there is only a little empirical work on how devel-
opers use mobile tools like this, but there is some formative
empirical work. For example, Li et al. observed that develop-
ing code directly on mobile devices has changed the way code
is written [22]. Their study points out new code-development
evolution patterns, such as dense external method calls and a
high code-reuse ratio. The study also showed the need for a
version control and code-search support for mobile IDEs to
better manage existing codebases written by end users [22].
Nguyen et al. observed that debugging mobile applications is
a hard problem, as current debugging techniques either re-
quire multiple compute devices or do not support graphical
debugging. To address this problem, they developed Graph-
ical On-Phone Debugger (GROPG) and showed that
GROPG lowered overall debugging time while improving
user experience [28]. However, none of the studies we have
been able to locate have investigated how developers forage
on mobile IDEs.

III. METHODOLOGY
To compare what kinds of foraging behaviors would seem

to fundamentally differ between desktop/laptop and mobile
environments, we replicated two previous desktop foraging
talk-aloud studies [35, 36], in which participants worked on a
text editor(JEdit) using the Eclipse IDE on desktops.

The first of these (the “original study”) [35], was our pri-
mary source of replication. This study enabled us to investi-
gate RQ1 and RQ2—whether and how previous findings on
the interaction of production bias with foraging might gener-
alize to, or change in, mobile environments. Its participants

Fig. 1: A portion of an information environment containing two patches
(rounded squares), connected via links (arrows). Patches contain
information features (hexagons), some of which are cues (hexagons
connected to links).

TABLE 1: IFT’S CONSTRUCTS AS OPERATIONALIZED IN THIS STUDY

Construct Operationalization
Predator The programmer seeking information
Prey The information the programmer is seeking
Patch Contents of view in the IDE, such as the Editor or File Ex-

plorer, but also a method or class
Link A way to navigate to another patch, such as a clickable link

in search results or scrollbar
Info. Feature A patch’s contents, such as comments, code or files
Cue Text or other decorative elements related to a link, such as

the name of a method

10

were 11 Computer Science students with 3–10 years of pro-
fessional experience. The second study (the “Desktop
value/cost study”) we replicated [36] enabled investigation of
RQ3. That study identified value and cost-related foraging
challenges faced by programmers debugging. The partici-
pants were 10 professional developers at Oracle, with 2–19
years of professional experience. Replicating this study ena-
bled us to address RQ3.

 We use the following shorthand to differentiate partici-
pants: Pnt-E denotes participant with ID n, in treatment t, in
environment E. For example, P2F-M is Participant #2, in the
Fix treatment, in the Mobile environment. (Mobile refers to
this paper’s study and Desktop refers to either of the two pre-
vious studies.)

A. Participants and Procedures
Our Mobile participants were 8 professional developers,

ages 20–55, at IBM (7 males and 1 female). None of them
were familiar with the study’s IDE or application, but they
were all experienced Android developers, and were given a
tutorial of AIDE prior to the task. They had 0.5–5 years (mean
2 years) of experience with Android, 2–20 years (mean 12
years) with Java, and 1–38 years (mean 19 years) with soft-
ware development.

Like the original study [35], we randomly divided the 8
participants into two treatments: Fix and Learn. Both treat-
ments worked on the same bug. We told Fix participants to
fix the bug, whereas we told Learn participants to “learn
enough about the defect such that they could onboard a new
programmer to fix it.” Both treatments could proceed how-
ever they desired, e.g., access the Web or use other tools.

We began each session with a brief introduction explain-
ing the study, followed by a background questionnaire. Par-
ticipants had 30 minutes to complete their assigned treat-
ment’s task (the “working session”), talking aloud as they
worked. We recorded the tablet’s screen, as in the original
study, and audio of their utterances while they worked.

Participants used a high-end tablet, the Samsung Galaxy
Tab S. The programming environment was AIDE, a full-fea-
tured IDE for Android with over 2 million downloads. Fig. 2
shows a screenshot of AIDE in action. AIDE explicitly sup-
ports external keyboards, so participants used a keyboard for
typing code and searching, but used the touchscreen for ac-
tions such as scrolling and selecting.

Participants from both treatments were asked to talk aloud
as they worked on Vanilla Music issue #148
(https://github.com/vanilla-music/vanilla/issues/148). Va-
nilla Music is a mature open-source music player for An-
droid, with between 500,000 and 1,000,000 downloads. It is
written in Java with 67 classes and 13,369 non-comment lines
of code. Issue #148 described a problem with playback.

After their working session, we conducted a semi-struc-
tured interview (the “retrospective session”). A researcher
played back the recording of the participant’s working ses-
sion, and asked 6 questions about each navigation (any tran-
sition to a file or method). For the first three, we stopped the

video just prior to the navigation and asked: (1) why the par-
ticipant chose to navigate there, (2) what expectations they
had of what they would find and (3) whether they had con-
sidered alternative navigations. We then resumed the video
and, just prior to the next navigation (i.e., navigating away),
we asked: (4) whether their expectations had been met, (5)
what they had learned at that location, and (6) whether what
they learned caused them to change their course. Like the
working session, the retrospective was video-recorded.

B. Analysis Methods
We performed three types of analyses: algorithmic count-

ing when data categorizations that did not require human
judgment (e.g., navigations). We counted Desktop naviga-
tions whenever a participant performed an action that moved
the cursor to a new class or method, and Mobile navigations
when two conditions were met: (1) a new method or file was
visible in AIDE’s editor, and (2) the participant indicated in-
terest in the method, either by reading it aloud or hesitating
in the method. The total number of navigations was 501
across 11 participants for Desktop, and 217 across 8 partici-
pants for Mobile. We also counted types of patches among
which participants navigated. A complete list of the patch
types is given in Table 2 in Section IV.

Secondly, we used qualitative coding [24] to categorize
the cue types participants talked about as well as their verbal-
ized expectations of a navigation. For cue types, we achieved
exactly the same inter-rater reliability of 83% over 20% of
the data for both environments as measured by the Jaccard
index. For expectations, we coded responses as either met ex-
pectations, did not meet expectations, or unclear. Using the
Jaccard index, we achieved an inter-rater reliability of 100%
on 20% of the data for this coding. Given this high level of
reliability, the two researchers then split up the remaining
data to code independently.

Finally, we used inferential statistics where we had
enough data to statistically analyze our question of replicat-
ing the significant difference found in the original study be-
tween the Fix vs. Learn conditions. The standard chi-squared
test would assume that our navigation events are statistically
independent, so instead we used the well-established method
of log-linear transformation followed by analysis of residual
deviance [1]. Even though we had only 8 participants, we had
adequate statistical power for this because our unit of analysis
with this technique is not participants but rather cue and patch
data points (155 and 217, respectively). One Desktop partic-

Fig. 2: AIDE in its debugger mode. Left: the currently paused stack trace.
Right: the currently executing line of code is highlighted.

11

ipant was removed as an outlier due to 112 out of 119 navi-
gations in the Debug patch coming from that participant, and
this participant was confused about Debug functionality.

IV. RESULTS

A. RQ1 Results: Production Bias Goes Mobile
The original study found significant differences between

Fixers and Learners so we begin by analyzing such differ-
ences in the Mobile world.

1) Production Bias: Present on Mobile?
According to IFT, foragers remain in the same patch until

the value/cost balance has tipped—i.e., they decide that they
will obtain more value per effort by going to another patch.

In IDEs, the locations of such tipping points (patches) can
be grouped into patch types. On the original Desktop study,
each view (sub-window) in an Eclipse window and each jEdit
window (i.e., the program with the bug) was a patch type,
containing one or more patches. Following this approach,
Fig. 2 depicts an AIDE window with two patch types. The
Stack Trace patch type contains one patch (the active stack
trace), and the Editor patch type is likely to contain multiple
patches (multiple methods or classes). Table 2’s left columns
list the patch types in the Mobile environment, with their us-
age in the right column.

We can similarly group the cues influencing these navi-
gations into cue types. This grouping abstracts individual cue
contents (words) to the source of inspiration that drew the
participant’s attention to that cue. Table 3’s left columns list
the cue types that participants attended to, with their overall
popularity in the right column.

Like their Desktop counterparts, Mobile Fixers and
Learners significantly differed in their foraging, as measured
by the patch types they navigated from (Analysis of deviance,
χ2(4)=28.49, p<0.001) as shown in Fig. 3. On Mobile the larg-
est differences were in the Editor patch type, which was more
often used by Learners, and the Package Explorer patch type,
which was more often used by Fixers.

Also like their Desktop counterparts, Mobile Fixers vs.
Learners also differed significantly in terms of the cue types
that influenced their navigations (Analysis of deviance, χ2
(6)=19.73, p=0.003) as shown in Fig. 4. Mobile Fixers more
often attended to Source Code Content Inspired cue types

(53% Fix versus 31% Learn), whereas Mobile Learners more
often attended to Domain Text (21% Learn versus 6% Fix)
and Output Inspired (7% Learn versus 0% Fix) cue types.

2) Fixers’ Foraging vs. Learners’ Foraging
Although the fact that Fixers vs. Learners foraged differ-

ently on Desktop generalized to Mobile, the particular patch
types they favored did not generalize. Fig. 5 (left) shows com-
monly navigated patch types for Fixers (top) and Learners

TABLE 2: MOBILE PARTICIPANTS’ NAVIGATION PATCH TYPES. THE
RIGHTMOST COLUMN IS PARTICIPANTS’ TOTAL NUMBER OF NAVIGATIONS

FROM THAT PATCH TYPE.

Patch
type

Information and navigational links #

Editor Shows the source code in a file 95
Package
Explorer

Provides a list of the files in the project. 47

Search
Results

Provides a list of occurrences of user-entered text or a
user-selected identifier in an Editor patch. Items can be
opened in Editor patch.

64

Stack
Trace

Provides a list of code locations on an execution path that
produced an exception in the running Vanilla Music pro-
gram. Items can be opened in the Editor patch.

5

Debug Provides a list of the currently executing code and program
state for a user-specified breakpoint.

6

TABLE 3: THE CUE TYPES MOBILE PARTICIPANTS FOLLOWED, AND
PARTICIPANTS’ TOTAL NUMBER OF NAVIGATIONS IN WHICH THEY

FOLLOWED EACH CUE TYPE.

Cue type Participant utterances about... #
Source-Code
Content Inspired

... cues related to source code they had seen,
such as relating to a particular variable or pa-
rameter, or reminiscent of a code comment

67

Level of Abstrac-
tion

... cues related to the level of abstraction of a
code location they had seen; e.g., "This method
is too specific"

40

Domain
Text

... cues related to text they had seen specific to
Vanilla Music's domain, such as "playlist"

20

Position ... cues related to the position of non-code ele-
ments they had seen on screen, such as the top
item in a list of search results

15

Output-
Inspired

... cues related to Vanilla Music output they had
seen, such as thrown exceptions (errors) or GUI
widget labels

5

File Type ... cues related to the type of a file they had
seen, such as Java vs. XML

6

Documentation-
inspired

... cues related to external documentation they
had seen, such as the bug report

2

Fig. 3: Mobile Patch Types: The proportion of patch types from which each
treatment's Mobile participants made navigations (Fix in dark red, Learn in
light red; medium red is where they overlap). We include the 5 most
common patch types.

Fig. 4: Mobile Cue Types: The proportion of cue types (5 most common)
attended to by Mobile participants for each treatment (Fix in dark red, Learn
in light red; medium red is where they overlap).

12

(bottom) on both environments. The graphs show little over-
lap. The particular cue types they favored did not generalize
either. Fig. 5 (right) shows the five most often attended to cue
types for Fixers (top) and Learners (bottom) in both environ-
ments, again showing little overlap between the ways in
which Fixers or Learners navigated in the two environments.

Note, however, that the main result generalizes: Fixers vs
Learners in the Mobile environment still differed signifi-
cantly from one another, which generalizes on the original
study’s findings of production bias on Desktop.

B. RQ2 Results: A theory-driven look
Given that Fixers vs. Learners behaved differently on

both platforms, why were their differences different across
platforms? To answer this question, we consider platform be-
haviors at a core IFT level.

As explained in Section II, IFT’s scent construct—which
predators “sniff out” from cues—is defined as predators’ at-
tempts to optimize their expectation of the value per cost of
navigating to the patch pointed to by that cue [38], i.e.,
E(V)/E(C).

In foraging to individual patches (e.g., individual meth-
ods), programmers cannot predict actual V/C unless they
have been to that patch before. However, a key advantage of
our study is that our results are at the granularity of types of
patches and cues (e.g., the Editor patch type covers all meth-
ods viewable in the Editor). At the type level, programmers’
expectations of a patch type’s value per cost (E(V)/E(C)) will
soon become informed by their experiential learning of IDE
feature types’ actual value and cost (V/C). For example, the
first time a programmer visits Eclipse’s Search Results patch
type, she learns that this patch type delivers not only the term

she searched for, but also the line number, surrounding text,
which file it is in, and where in the project’s folder structure
that file is located—i.e., the value that patch type always de-
livers. She also learns that selecting a search result will open
the relevant file with the cursor at the line of interest, thus
informing her of typical costs associated with using that patch
type. As a result, over time E(V)/E(C) will approach V/C, at
the level of patch types.

Given this, what we should expect to see is programmers
favoring patch types that tend to return the greatest V/C for
their goals. And this is precisely what the participants did—
the frequency ranking of their visits by type on both platforms
followed the same order as max(V/C). However, what it took
to maximize this ratio differed on Mobile vs. Desktop. On
Mobile, the cost C to navigate between patch types tended to
be high; thus cost dominated the fraction. (That is, if C in
V/C is high, V has little effect on V/C’s outcome unless V
also is high.)

The Mobile costs in Table 4 show that costs C were in-
deed very high for navigations to/from anywhere except the
Editor—and each increase in cost was accompanied by a drop
in popularity of the patch type. Fig. 6 adds a measure of how
much more expensive patch types became when running the
application was required, and Fig. 7 demonstrates costs in
terms of additional information loss.

In contrast to the Mobile platform, on the Desktop plat-
form value V was the dominant factor in maximizing V/C.
The reason is that cost C was generally low—much lower
than on Mobile—a few clicks/keystroke actions, occasionally
a 2-second delay to get the application running, and no infor-
mation loss. (That is, since C in V/C is low, V determines
V/C’s outcome unless V also is low.) As Table 5 shows,

Patches Cues

Fi
x

Le
ar

n

Fig. 5: (left): Patch types for Fixers and Learners. The proportion of patch types from which each environment’s Fix (top) and Learn (bottom) participants made
navigations (Desktop in blue, Mobile in red, Fix is dark, Learn is light). (right): Fix Cue types for Fixers and Learners. The proportion of cue types attended to by
Fix (top) and Learn (bottom) participants for each environment (Desktop in checkered blue, Mobile in solid red, Fix is dark, Learn is light).

13

Desktop popularity ranks went lockstep with value: “Indis-
pensible” for the Editor, because it is impossible to see and
edit a chunk of code any other way; then the only two widely
used ways to see dynamic information (e.g., variable values);
and finally optional alternative views of static code.

The comparison between Mobile participants’ cost-driven
behavior with Desktop participants’ value-driven behavior
suggests the following hypothesis. Mobile costs of some
patch types were so high—an order of magnitude higher than
Desktop’s (Table 4 and Table 5)—that participants simply
could not afford some of the information they would have
liked if it had been as inexpensively available as on Desktop.
This suggests that Mobile IDE tool builders would do well to
prioritize reducing the navigation costs of using their IDEs.

C. RQ3 Results: Research Challenges Go Mobile
The Desktop value/cost study identified a “lower bound”

on a predator’s information foraging cost per value received
[36] using information scent. Since scent is defined as the
predator’s advance predictions of cost per value [39], a lower
bound depends on how well a predator can estimate in ad-
vance of their navigation(s) the actual cost they will pay for
the actual value they will receive.

The Desktop value/cost study then identified seven prob-
lems participants had in estimating value and cost, thereby
interfering with their ability to achieve the lower bound. A
literature analysis of over 300 papers [36] showed that these

problems remain largely unsolved. In this section we consider
whether and how the same problems arose in the Mobile en-
vironment.

1) Value estimation problems
Three of the problems identified in the Desktop value/cost

study were value estimation problems, and value estimation
problems were also frequent for Mobile participants. Recall
(Section III) that after the debugging task, we asked partici-
pants whether their expectations of the value each navigation
would deliver had been met (Methodology section). For Mo-
bile participants, 50% of responses were negative; in the
Desktop value/cost study, the percentage was almost identi-
cal: 51% of responses were negative.

The False Advertising Problem: False advertising in IFT
[36] is an implied promise by a cue that is not delivered by
the patch to which it points. For example, a cue in the form
of a method call could imply that the method manipulates a
data structure, when in reality the method simply updates the
UI or serves as “driver” code whose sole purpose is to call
other code to perform all the work. False advertising arose for
two of the Mobile participants (Table 6). For example, P5F-
M navigated to ShowQueueAdapter.java expecting to find
code to add or delete an item, but instead found UI code:

P5F-M: <the code> seemed to be more of a UI thing … <so I>
wasn't sure this was where I should be looking.

TABLE 4: MOBILE PATCH-TYPE NAVIGATION COSTS C AS DETERMINERS
OF PATCH-TYPE POPULARITY (RANK). REQUIRED ACTION COSTS OF

NAVIGATING FROM EDITOR TO OTHER PATCH TYPES IN MOBILE
ENVIRONMENT, MEASURED IN UNITS OF TAPS/SWIPES. NAVIGATIONS AWAY
FROM EDITOR REQUIRED ERASING PREVIOUS INFORMATION CONTENT DUE

TO LIMITED REAL ESTATE (FIG. 7).

Mobile
rank

Mobile costs:
actions, time, and information loss

Editor 1 0
Search Results 2 0-3, + lose panel content
Package Explorer 3 0-3, + lose panel content
Debug 4 5+, +run*, + lose panel content+*
Stack Trace 5 6-8, +run*, + lose panel content+*
*running the application. Time cost: Fig. 6. Information loss: entire screen.

Fig. 6: (Top) Runs: Mobile participants tended to run the application less
often than Desktop participants. (Bottom) Time: Getting VanillaMusic
Mobile running took significantly longer than getting jEdit Desktop running
(Fishers Exact Test, p<.0001). Categories in the Fisher’s exact test were
runtimes of >2 and <=2 seconds. VanillaMusic Mobile cost to start was 1-
45 seconds (median 18 seconds), whereas the maximum jEdit Desktop cost
to start was 2 seconds (vertical line at 2-second mark).

Fig. 7: (Left): Six mobile screen layouts. Participants had a maximum of 2
panels open at once, as in the first five depictions. The extra panel could be
moved between the left and the bottom. For example, navigating to the
Stack Trace would cover, say, the Search portion of the screen. Running the
program covered the entire screen, so it was not possible to see the Editor
while running the program. (Right): A desktop screen layout. Participants
could have as many panels and windows open at once as they wanted. The
running instance of the program did not need to cover the entire screen, so
other patches were still visible.

TABLE 5: DESKTOP PATCH-TYPE VALUE V AS DETERMINERS OF PATCH-
TYPE POPULARITY (RANK): INDISPENSABLE FIRST (TO SEE/EDIT CODE), THE
ONLY TWO POPULAR WAYS TO GET DYNAMIC INFORMATION SECOND, AND
OPTIONAL STATIC VIEWS LAST. NO INFORMATION COSTS WERE INCURRED

BY NAVIGATING AMONG PATCH TYPES.

Desktop
rank

Desktop
info. value

Desktop
costs

Editor 1 Indispensable static view for
seeing low-level code details.

0

Debug 2 One of 2 ways to see dy-
namic info

1-34
+ £ 2 sec*

Stack Trace 3 The other way to see dy-
namic info

0-14
+ £ 2 sec*

Search Results 4 (tie) Optional view of code 2-5
Package Explorer 4 (tie) Optional view of structure 0
*running the application cost £ 2 seconds (Fig. 6), and 0 information loss.

O
ut
lin
e

Ed

Debug Variables

Running	
Program

Console

14

Synonym Problems: Many researchers have shown IFT
benefits from automatically harvesting word similarities us-
ing approaches like TF-IDF and LSI [32, 43, 49]. These ben-
efits come from reducing false negatives, i.e., finding relevant
patches even if they do not contain the exact word sought.
However, the Desktop study revealed that synonyms also can
increase false positives by enlarging the predator’s search
space with patches that are not relevant. This problem arose
for 4 of 8 Mobile participants (Table 6). For example, P2F-M
navigated to AudioPickerActivity.java because the words
“activity” and “picker” suggested to P2F-M that:

P2F-M: <it> might have an enqueue song operation… but it
turned out not to be relevant.

Answering the “wrong” question: This problem is a mis-
match between a forager’s “question” (goal) vs. the kind of
“answer” delivered by an apparently promising cue (e.g.,
following a method name cue to its method) [36]. For exam-
ple, the Desktop foragers’ questions were of the “where does”
variety, such as where in the code a variable actually gets up-
dated. However, many method names are not intended to an-
swer that question. Mobile participants faced this problem
too—6 out of 8 did (Table 6). For example, when P5F-M nav-
igated to PlaylistTask.java, he found that it did not answer his
“where does” question after all:

P5F-M: <trying to figure out> where the interaction is between
the playlist and queue…<but PlaylistTask.java> probably had
nothing to do with manipulation of the queue… it was <just>
some kind of interface.

2) Cost estimation challenges
The Desktop value/cost study also identified three open

research challenges related to cost.

Prey in Pieces: This problem refers to bits and pieces of
the prey scattered across multiple patches [36]. For example,
Mobile participant P1F-M navigated within PlaylistActiv-
ity.performAction(), but realized he would need to also gather
information in related code in addSongs() and Query-
Task.java (Fig. 8’s 1 and 2). Rather than bearing the cost of
piecing this all together, he gave up (Fig. 8’s 3). This problem
arose for 7 of our 8 Mobile participants (Table 6).

The (Seemingly) Endless Path: The endless path problem
is a path to the prey so long that the forager gives up before
reaching the prey [36]. For example, when:

P7F-M: “wanted to see how they set the query <list of songs>
in this method”,

she navigated from the addSongs() method to the runQuery()
method to a search for usages of runQuery to a search result,
and believed she had found a useful path. However, in her
next navigation she did not find what she expected to find,
and she changed course (illustrated in Fig. 9). Six of the 8
Mobile participants experienced this problem (Table 6).

The Disjoint Topologies Problem: When some topologies
are not linked to related topologies [36], problems arose for
both Desktop and Mobile participants. For Mobile partici-
pants, one situation was having pay high costs to map be-
tween the running instance of the application and its source
code; others were trying to understand relationships between
external Android frameworks or the Android manifest file
and the Vanilla Music code.

P3L-M, after running the application, “the bug is actu-
ally...clicking on one thing in the library is not the same as the
behavior when I do this long press and hit play. And so for this
I should find out where the long press play originates,” which
prompted him to look through source code for “some kind of ‘on
click’ method.”

P1F-M: looked through the manifest file for Android activities
“that might be indicative of a list of songs for playback,”

Four of the 8 Mobile participants experienced disjoint to-
pology problems (Table 6).

3) The Scaling Up Problem
The final research challenge identified in the Desktop

value/cost study was scaling up: finding ways to support for-
agers’ ability to estimate a navigation sequence’s costs and
ultimate value—before paying the cost—for patches that are
more than one click away. Although there are a few counter-
examples in the literature [36], most research to help foragers

TABLE 6: NUMBER OF PARTICIPANTS WHO EXPERIENCED SYMPTOMS OF
THE 7 RESEARCH CHALLENGES.

Problems & Research
Challenges

Mobile
Participants

Desktop
Participants

Value Estimation Problems:
 #1: False advertising 2/8 (25%) 5/10 (50%)
 #2: Synonyms 4/8 (50%) 3/10 (30%)
 #3: “Wrong” question 6/8 (75%) 7/10 (70%)
Cost Estimation Problems:
 #4: Prey in pieces 7/8 (88%) 8/10 (80%)
 #5: Endless paths 6/8 (75%) 7/10 (70%)
 #6: Disjoint topologies 4/8 (50%) 10/10 (100%)
The Scaling Up Problem Affects all the above

Fig. 8: Prey in Pieces. (Left): Mobile participant’s P1F-M navigated to the
solid methods, but realized he also needed (1 and (2) at the end of the dotted
methods. (Right [36]): Desktop participant P1-D’s path looked remarkably
similar to P1F-M’s. He too needed to piece together information to get the
needed information (1’ and 2’), but gave up instead (3’).

Fig. 9: Endless paths: (Left): P7F-M started down a path, but gave up 1 click
before arriving at the right method. (Right [36]): P3-D navigated several
frames down the debugger’s stack frames looking for methods related to
folding or deletion. He gave up 3 clicks short of the right method.

15

align their estimates of value with real value (and likewise for
cost) are akin to tooltips, showing only the nearest neighbor-
hoods but not providing a longer-view “map” of values and
costs foragers can expect. An example of the one-click-away
sort is a Desktop tooltip showing a method’s header.

For Mobile participants, the scaling-up problem exacer-
bated almost all of the above problems—almost every patch
type was inherently more “myopic” (nearsighted) than its
Desktop counterpart. For example, Fig. 10 (left) shows how
much less information the Package Explorer patch type pro-
vided on Mobile than on Desktop. Likewise, the Editor in
Mobile is more myopic than Desktop (not shown) because
there is no hover text in Mobile. Desktop is able to use hover
text to provide a description of code without the programmer
needing to navigate away. Even the one patch type in Mobile
that did allow a look more than one click away, Search Re-
sults, provided less information than its Desktop counterpart
because Mobile truncated long lines of code.

Part of the reason the Mobile environment had fewer in-
formational affordances may lie in Mobile IDEs’ newness
relative to Desktop IDEs, but the problem goes beyond new-
ness. Mobile environments are severely constrained both in
terms of screen space and in terms of affordances possible.
For example, only Desktops allow hovering and tooltips,
multiple mouse buttons, etc. This suggests that solving the
Scaling Up problem for Mobile foraging will be even more
challenging than solving it for Desktop foraging.

V. DISCUSSION: REPLICATING FROM DESKTOP TO
MOBILE

One thing our study brings out about replicating desktop-
based studies to mobile is the tension between consistency
with the desktop study conditions vs. authenticity. The fuer-
ther a replication on mobile from the desktop study’s envi-
ronment, task, affordances, etc., the lower its ability to test
the generalizability of the desktop results. However, if the
replication on mobile is too close to desktop conditions, it
loses authenticity as a mobile experience. Addressing this
tension between consistency and authenticity matters to our
community’s ability to bring years of desktop-based research
to inform mobile tools.

Our solution to this tension was a two-pronged strategy:
(1) we did not sacrifice authenticity (so the IDEs, apps being
debugged, and bugs were authentically mobile), and (2) we
leveraged IFT to obtain consistency at the level of theory.

Leveraging IFT allowed us the ability to abstract beyond in-
stances (e.g., particular IDEs, apps, and concrete information
content) to the core of IFT—participants’ attempts to maxim-
ize E(V)/E(C) in both environments. Particularly useful was
the notion of patch types, which we leveraged to understand
the participants’ behaviors in terms of the costs vs. value they
expected from each patch type.

The study’s IFT foundations also enabled us to generalize
participants’ foraging difficulties across the two environ-
ments and relate them to open research challenges. As Table
6 showed, the extent to which each of these problems arose
in the two environments adds to the mounting evidence of the
extent to which existing IDEs and software tools subject pro-
grammers to onerous and pervasive foraging obstacles.

However, we caution that, to the best of our knowledge,
we are the first to attempt replicating from desktop to mobile
in this fashion. Additional studies using our replication ap-
proach are needed, to gather more evidence of results being
due not to differences in the particular UIs, tasks, and code
base participants experienced, but rather to theory-based phe-
nomena consistent with those observed in our study.

VI. CONCLUSION
In this paper we have empirically investigated, through a

theory-based dual replication study, whether and how forag-
ing results from a desktop IDE applied to foraging in a mobile
IDE. Our results showed several ways in which the foraging
results from the desktop-based studies generalized to the mo-
bile environment, even when results about particular af-
fordances and information types did not. In particular:

• RQ1 (Production Bias meets IFT): As with the desktop en-
vironment, mobile developers tasked with actually fixing a
bug foraged differently than mobile developers tasked with
learning enough about the bug to help someone else fix it.
This suggests that Minimalist Learning theory’s concept of
production bias interacts with IFT in similar ways for Mo-
bile as it does for Desktop, an interaction that could be lev-
eraged by IFT-based computational models and tools.

• RQ2 (How/why): The patch types and cue types favored by
Desktop participants did not generalize to Mobile. How-
ever, from the perspective of maximizing V/C, the behav-
ior results did generalize: on both platforms, participants’
usage by type followed the same order as V/C.

• RQ3 (Problems & challenges): Foraging difficulties partic-
ipants had faced in the Desktop IDE revealed seven open
research challenges, and these seven difficulties seem to be
approximately as pervasive in the Mobile environment as
they were on the Desktop.

Indeed, seeing how this last point played out for our Mo-
bile participants was painful. Still, the environment is argua-
bly one of the best available for mobile development at this
time. Although this seems to argue against even trying to per-
form such a complex information task on a mobile device, the
benefits of doing so seem to outweigh the disadvantages in
the marketplace, because these kinds of apps are rapidly
growing on mobile devices. This suggests an urgency for re-
search that can ultimately address at least some of the re-
search challenges our results reveal.

Fig. 10: (Left): The Package Explorer in the Mobile environment lists only
the file names. (Right): The Package Explorer in the Desktop environment
(shown here on the same code base) allows listing multiple levels of
elements in the file.

REFERENCES
[1] A. Agresti. 2003. Categorical Data Analysis. Wiley, 2003.
[2] E. Anderson, S. Li, and T. Xie. 2013. A preliminary field study of game

programming on mobile devices. CoRR abs/1310.3308.
[3] J. Brandt, P. Guo, J. Lewenstein, M. Dontcheva, and S. Klemmer.

2009. Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code. ACM CHI, 1589–1598.

[4] S. Burckhardt, M. Fähndrich, P. Halleux, S. McDirmid, M. Moskal, N.
Tillmann, and J. Kato. 2013. It’s alive! Continuous feedback in UI
programming. ACM PLDI, 95–104.

[5] M. Burnett, J. Atwood, Z. Welch. 1998. Implementing level-4 liveness
in declarative visual programming languages. IEEE VL, 126-133.

[6] G. Buscher, E. Cutrell, and M. Morris. 2009. What do you see when
you're surfing? Using eye tracking to predict salient regions of web
pages. ACM CHI, 21-30.

[7] E. Chi, P. Pirolli, K. Chen, and J. Pitkow. 2001. Using information
scent to model user information needs and actions on the web. ACM
CHI, 490-497.

[8] C. Choo, B. Detlor, and D. Turnbull. 2000. Web Work: Information
Seeking and Knowledge Work on the World Wide Web (vol. 1).
Springer Science & Business Media.

[9] C. Crandall and J. Sherman. 2016. On the scientific superiority of
conceptual replications for scientific progress. J. Experimental Social
Psychology 66: 93-99.

[10] R. Francese, M. Risi, G. Tortora and M. Tucci. 2016. Visual mobile
computing for mobile end-users. IEEE Trans. Mobile Computing 15,
4: 1033-1046.

[11] J. Carroll. 1998. Minimalism Beyond the Nurnberg Funnel. MIT Press.
[12] E. Chi, A. Rosien, G. Supattanasiri, A. Williams, C. Royer, C. Chow,

E. Robles, B. Dalal, J. Chen, and S. Cousins. 2003. The Bloodhound
project: Automating discovery of web usability issues using the
infoscentπ simulator. ACM CHI, 505–512.

[13] S. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy, J.
Lawrance, and I. Kwan. 2013. An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks. ACM
TOSEM 22, 2: 14.

[14] W. Fu, P. Pirolli. 2007. SNIF-ACT: A cognitive model of user
navigation on the World Wide Web. Human–Computer Interaction.

[15] C. Held, J. Kimmerle, and U. Cress. 2012. Learning by foraging: The
impact of individual knowledge and social tags on web navigation
processes. Computers in Human Behavior 28, 1: 34-40.

[16] J. Krämer, T. Karrer, J. Kurz, M. Wittenhagen, and J. Borchers. 2013.
How tools in IDEs shape developers’ navigation behavior. ACM CHI.

[17] S. Kuttal, A. Sarma, and G. Rothermel. 2013. Predator behavior in the
wild web world of bugs: An information foraging theory perspective.
IEEE VL/HCC, 59–66.

[18] T. LaToza, G. Venolia, R. DeLine. 2006. Maintaining mental models:
A study of developer work habits. ACM/IEEE ICS, 492–501.

[19] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector. 2008. Using
information scent to model the dynamic foraging behavior of
programmers in maintenance tasks. ACM CHI, 1323-1332.

[20] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, and C. Swart. 2010.
Reactive information foraging for evolving goals. ACM CHI, 25-34.

[21] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S.
Fleming. 2013. How programmers debug, revisited: An information
foraging theory perspective. IEEE TSE 39, 2: 197–215.

[22] S. Li, T. Xie, and N. Tillmann. 2013. A comprehensive field study of
end-user programming on mobile devices. IEEE VL/HCC, 43–50.

[23] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. 2014. On the
comprehension of program comprehension. ACM TOSEM 23, 4: 31.

[24] P. Mayring. 2014. Qualitative Content Analysis: Theoretical
Foundation, Basic Procedures and Software Solutions. Beltz,
Klagenfurg.

[25] C. Mbogo, E. Blake, and H. Suleman. 2016. Design and use of static
scaffolding techniques to support Java programming on a mobile
phone. ACM ITiCSE, 314-319.

[26] S. McDermid. 2013. Usable live programming. ACM Onward!, 53-62.
[27] T. Nabi, K. Sweeney, S. Lichlyter, D. Piorkowski, C. Scaffidi, M.

Burnett and S. Fleming. 2016. Putting information foraging theory to
work: Community-based design patterns for programming tools. IEEE
VL/HCC, 129-133.

[28] T. Nguyen, C. Csallner, and N. Tillmann. 2013. GROPG: A graphical
on-phone debugger. ACM/IEEE ICSE, 1189–1192.

[29] T. Nguyen, S. Rumee, C. Csallner, and N. Tillmann. 2012. An
experiment in developing small mobile phone applications comparing
on-phone to off-phone development. Int. Workshop on User Evaluation
for Software Engineering Researchers (USER), 9–12.

[30] N. Niu, A. Mahmoud, and G. Bradshaw 2011. Information foraging as
a foundation for code navigation. ACM/IEEE ICSE, 816–819.

[31] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw. 2013. Departures
from optimality: Understanding human analyst’s information foraging
in assisted requirements tracing. ACM/IEEE ICSE, 572–581.

[32] D. Piorkowski, S. Fleming, C. Scaffidi, L. John, C. Bogart, B. John, M.
Burnett, R. Bellamy. 2011. Modeling programmer navigation: A head-
to-head empirical evaluation of predictive models. IEEE VL/HCC.

[33] D. Piorkowski, S. Fleming, I. Kwan, M. Burnett, C. Scaffidi, R.
Bellamy, and J. Jordahl. 2013. The whats and hows of programmers’
foraging diets. ACM CHI, 3063–3072.

[34] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John,
R. Bellamy, and C. Swart. 2012. Reactive information foraging: An
empirical investigation of theory-based recommender systems for
programmers. ACM CHI, 1471–1480.

[35] D. Piorkowski, S. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A.
Henley, J. Macbeth, C. Hill, and A. Horvath. 2015. To fix or to learn?
How production bias affects developers’ information foraging during
debugging. IEEE ICSME, 11–20.

[36] D. Piorkowski, A. Henley, T. Nabi, S. Fleming, C. Scaffidi, M. Burnett.
2016. Foraging and navigations, fundamentally: Developers’
predictions of value and cost. ACM FSE, 97-108.

[37] P. Pirolli and S. Card. 1995. Information foraging in information access
environments. ACM CHI, 51–58.

[38] P. Pirolli and W. Fu. 2003. Snif-act: A model of information foraging
on the world wide web. In User Modeling 2003, P. Brusilovsky, A.
Corbett, and F. de Rosis (eds.). Springer, 45-54.

[39] P. Pirolli and S. Card. 1999. Information foraging. Psychological
Review 106, 4: 643.

[40] T. Roehm, R. Tiarks, R. Koschke, W. Maalej. 2012 How do
professional developers comprehend software? ACM/IEEE ICSE.

[41] A. Singh, A. Henley, S. Fleming, and M. Luong. 2016. An Empirical
Evaluation of Models of Programmer Navigation. IEEE ICSME, 9-
19.

[42] J. Spool, C. Perfetti, and D. Brittan. 2004. Designing for the scent of
information. User Interface Engineering.

[43] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker. 2008.
Identifying word relations in software: A comparative study of
semantic similarity tools. IEEE ICPC, 123-132.

[44] S. Srinivasa Ragavan, S. Kuttal, C. Hill, A. Sarma, D. Piorkowski, M.
Burnett. 2016. Foraging among an overabundance of similar variants.
ACM CHI, 3509-3521.

[45] S. Tanimoto. 1990. VIVA: A visual language for image processing. J.
Visual Languages Computing 1, 2: 127-139.

[46] N. Tillmann, M. Moskal, J. Halleux, and M. Fahndrich. 2011.
TouchDevelop: Programming cloud-connected mobile devices via
touchscreen. ACM Onward! 49–60.

[47] N. Tillmann, M. Moskal, J. Halleux, M. Fähndrich, J. Bishop, A.
Samuel, and T Xie. 2012. The future of teaching programming is on
mobile devices. ACM ITiCSE, 156–161.

[48] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook. 1997. Does
continuous visual feedback aid debugging in direct-manipulation
programming systems? ACM CHI, 258-265.

[49] J. Zhou, H. Zhang, and D. Lo. 2012. Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on
bug reports. ACM/IEEE ICSE, 14-24.

17

