Towards More Effective Al-Assisted Programming:
A Systematic Design Exploration to Improve Visual
Studio IntelliCode’s User Experience

Priyan Vaithilingam*, Elena L. Glassman*, Peter GroenwegenT, Sumit Gulwani,
Austin Z. HenleyT, Rohan MalpaniT, David PughT, Arjun Radhakrishnaf, Gustavo Soares!,
Joey Wang', Aaron Yim'

*Harvard University
TMicrosoft

Abstract—Al-driven code editor extensions such as Visual
Studio IntelliCode and Github CoPilot have become extremely
popular. These tools recommend inserting chunks of code, with
the lines to be inserted presented inline at the current cursor
location as gray text. In contrast to their popularity, other Al-
driven code recommendation tools that suggest code changes (as
opposed to code completions) have remained woefully underused.
We conducted lab studies at Microsoft to understand this
disparity and found one major cause: discoverability. Code change
suggestions are hard to surface through bold, inline interfaces
and hence, developers often do not even notice them.

Towards a systematic understanding of code change interfaces,
we performed a thorough design exploration for various cate-
gories of code changes: additive single-line changes, single-line
changes, and multi-line changes. Overall, we explored 19 designs
through a series of 7 laboratory studies involving 61 programmers
and distilled our findings into a set of 5 design principles. To
validate our results, we built and deployed a new version of
IntelliCode with two of our new inline interfaces in Microsoft
Visual Studio 2022 and found that they lead to a significant
increase in usage of the corresponding tools.

Index Terms—inline-suggestion, Al-suggestion, refactoring,
iterative-refinement, code-completion

I. INTRODUCTION

Integrated Development Environments (IDEs), such as Vi-
sual Studio [1], provide tool support for several code editing
tasks, from writing new code to modifying existing ones.
Recently, Al-driven code editor extensions such as Intelli-
Code [2] and Copilot [3] introduced new features that can
recommend entire lines of code. These features adopted the
gray text interface to preview the suggestion inline in the
editor as shown in Figure 1. They quickly became popular, and
IntelliCode was ranked best feature in Visual Studio 2022 [4]
and Copilot is now widely studied in academia [5]-[7].

Al-driven extensions are also starting to help programmers
to modify existing code. IntelliCode uses program synthesis
techniques [8], [9] to automate custom repetitive code changes.
It leverages the past changes performed by the developer in
the IDE to predict the next code changes they will do. Figure 2
shows an IntelliCode suggestion to automate a custom repet-
itive change that a developer was manually performing. The
suggestion is shown using the lightbulb interface (Figure 2a),

- [HttpPost]
- [AllowAnonymous]

~public~IActionResult-upkqu(FileViewFodel-fileViewModel)

[Tab] to accept

Figure 1: An inline gray fext suggestion produced by Visual
Studio’s IntelliCode feature.

which is traditionally used in IDEs to present code change
suggestions. The developer has to manually click the lightbulb
and read through the menu items, to see all available code
change suggestions.

In contrast to the gray text experience, the Visual Studio
IntelliCode telemetry showed that code changes suggested
through lightbulb interfaces are heavily underused. We con-
ducted lab studies at Microsoft to understand why developers
were not using this feature in IntelliCode and we identified
one major issue: discoverability. Unlike inline gray-text in-
terface in which suggestions are presented proactively to the
developer, lightbulbs require manual initiation. However, the
developer is not always aware of all the suggestions available
via the lightbulb interface. Sometimes, they don’t even realize
that a suggestion is being presented via a lightbulb. This
problem is aggravated with Al-assisted suggestions, because
these suggestions are significantly more dynamic with their
availability changing frequently due to the constant improve-
ments to the AI model. This observation corroborates with
past studies that identified several usability issues that lead to
the underuse of refactoring tools in IDEs [10]-[12].

The limitations of existing interfaces for suggesting code
changes and the success of the inline gray text interface for Al-
assisted code insertions, inspired a natural question: How can
we leverage inline interfaces to effectively show Al-assisted
code changes?

We performed a systematic design exploration to answer
the above question. In particular, we investigated a variety of

u3 }
yy }

NotNullOrEmpty((y) => y.Description);

RuleFor(x => x.TagList).NotNull().NotEmpty();

(a) An ellipses is shown under RuleFor indicating suggestions are available. A lightbulb is displayed on navigating to the ellipses.

41
4@~

43 . .
ul Use discard '

RuleFor(x => x.TagList).NotNull().NotEmpty();

48 Introduce local for 'RuleFor(x => x.TagList).NotNull().NotEmpty()'

14 Wrap call chain
47 Wrap and align call chain

g * IntelliCode suggestion based on recent edits: NotNullOrEmpty(x => x.TagList) » Apply suggestion

:E Suppress or Configure issues » | Ignore suggestions like this
51 }

52

53 = public class CommandValidator : BaseValidator<Command>

en 5

Ctrl+Alt+. Lines 41 to 43

RuleFor(x => x.TagList).NotNull().NotEmpty();

EotNqurEmptg(x => x.Taglist);
}

(b) A full diff-view of the suggested changes on selecting the item on lightbulb menu.

Figure 2: An Al-assisted code change suggestions produced by IntelliCode after the developer had perform a similar change
twice. The suggestion is progressively revealed through the lightbulb interface in Visual Studio 2022.

inline code change interfaces by testing 19 different designs
that we explored across 7 user studies with 61 participants.
Our method involved a user-centered design approach where
we iteratively established hypotheses, created a set of design
prototypes, ran user studies to elicit feedback on the designs,
and performed open coding to gain insights from users.

Our designs addressed 3 separate categories of code change
suggestions: (a) Additive changes, that suggest adding code
tokens at multiple places beyond just at the current cursor
location (see Figure 4); (b) Single-line changes, that suggest
both deleting existing tokens and adding new tokens on a
single line (see Figure 5); and (c) Multi-line changes, that
suggest deleting and adding new code on multiple lines
(see Figure 6). These categories require increasingly visually
complex designs. At the end of our investigation, we ended
up with the designs depicted in Figure 4 for additive changes,
Figure 5(a) for single-line changes, and Figures 6(a) and 7(a)
for multi-line changes.

Equally important, we also distilled 5 design principles
including the need to juxtapose the original and modified
code, reuse existing interfaces, and provide suggestions proac-
tively. Note how each of the above designs follows the
above principles, calling back to familiar software engineering
interfaces of colored diff views and gray text and allow the
developer to understand both the original and modified code at
a glance. We validated the findings for two notable interfaces
by implementing and deploying them as part of IntelliCode
in Visual Studio 2022. These interfaces were used by several
thousands of developers and led to a 3.5x overall increase in
the usage of Al-assisted code changes produced by this tool.

Based on this work, we make the following key contribu-
tions:

o A systematic design exploration of 19 user interface
designs for code change suggestions in a popular code
editor;

Iterate based on user feedback

e
_
_
EE_
_

Multiple parallel designs,
Done simultaneously.

Designs filtered
through voting

User testing,
Best ideas merged

Sense-making to identify
best design takeaways

Figure 3: Design exploration and user testing strategy.

« Findings from a series of user studies on the designs
involving 61 professional programmers;

« Findings from a large-scale field deployment of two
notable prototype designs;

o Empirically grounded principles for the design of code
suggestions based on the findings.

II. METHODOLOGY

To better understand how to leverage in-line interfaces for
Al-assisted code changes, we (1) performed a systematic
design exploration, (2) conducted a series of user studies, and
(3) performed a field deployment of two notable designs.

A. Design Process

We use a combination of iterative design and parallel design
techniques proposed in [13] (Figure. 3). Each design iteration
contains three steps:

1) Parallel Design For each iteration, we come up with a set

of hypotheses, and create 8-10 designs for the given set

Iterative Design Exploration

Stage Iteration Total Participant count
designs
explored
1. Additive code 1 1 12 (P;1 — P;12)
changes
2. Single-line code 1 4 8 (Pe1— P:8)
changes 2 4 8 (P9 — P.16)
1 4 8 (Pml— Pp8)
3. Multi-line code 2 1 6 (Pn9— Pnrl4)
changes 3 3 11 (P15 - Py 25)
4 2 8 (Pm26 - Pp33)
Total 7 19 61

Table I: Design exploration table.

of hypotheses. Through multiple rounds of discussion and
voting among the authors, we select up to 4 designs for
user testing. Overall we created ~50 designs, of which
19 designs were selected through voting to be user tested.

2) User testing We create prototypes using the selected
designs from the previous step and run user studies to
understand the usability of the designs. For each iteration,
we typically run the user study with 8 participants.

3) Sensemaking Three of the authors do an open coding of
participants’ think aloud transcripts, informal interview
responses, and observation notes for every iteration, and
extract themes and learning that will be used for the next
iteration or to create the final design.

Additionally, we have split the design exploration into three
stages as shown in Table I. Each stage addressed a broad type
of code change ranging from simpler code changes to more
complex ones.

B. Study Procedure

We recruited 61 participants (59 Male, 2 Female) for user
studies over 7 iterations. All the participants were Visual
Studio users who have been using the IDE for at least 3
years. Each session was conducted remotely via Microsoft
Teams with the environment pre-configured with out Visual
Studio plugin, with each session taking around 45 minutes
to complete. All sessions were audio and video recorded,
including the participants’ screens. We followed the same
procedure within each iteration. We start with an informal
interview about the participant’s general code editing and
refactoring experience with Visual Studio. This interview is
followed by a brief overview of the code repository that the
participant will be using during the study along with the tasks.
Participants could ask questions about the code and tasks at
any time. We also asked the participants to think out loud.
We do not inform the participants about the existence of the
inline suggestion tool. We then ask each participant to perform
one task per prototype we are testing in the iteration (within-
subjects study). Finally, we then conduct an informal interview
to understand the participant’s feedback. During the user study,
we explore the following research questions.

1) RQ1: Do participants notice the suggestions?

2) RQ2: Do participants understand the proposed sugges-

tions, i.e., which code the system suggests removing and
what code it suggests adding?

class
{
public ObstacleType type { get; set; }
public int XPos { get; set; }
public int YPos { get; set; }
public double XVelocity { get; set; }
public double Yvelocity { get; set; }

public Obstacle (|)

) (a)

public ObstacleType type { get; set; }
public int XPos { get; set; }

public int YPos { get; set; }

public double Xvelocity { get; set; }
public double YVelocity { get; set; }
private bool Isvalid { get; set; }

Tab accept

public Obstacle (ObstacleType type, int xPos, int yPos, double xVelocity, double yVelocity])
{
Type = type;
XPos = xPos;
2n o Xvelocity = xvelocity;
2 YWelocity = yvelocity;

) (b)

}

BEeNahE8REsow

Figure 4: Designs for Code Insertion using gray-text design.

3) RQ3: How much effort does it take to evaluate and act
on the suggested changes?

After each iteration, the authors of the paper collate par-
ticipant’s think aloud audio transcripts, informal interview
responses, and the observation notes for the sensemaking
where we perform an open coding of the collected data over
2-3 sessions.

C. Implementation

For the parallel design step, we used the Figma' tool to

create high-fidelity mock-ups. To test the selected designs
with users, we used a combination of real prototypes built
on top of Visual Studio IntelliCode and wizard of oz [14]
low-cost prototypes built with Figma. We chose between
building the prototype or using Figma depending on the
complexity of the interface. Finally, for the field deployment,
we developed production-level features in IntelliCode with the
selected designs [15].

III. DESIGN EXPLORATION
A. Stage I: Designing for additive code changes

For the first stage of the design exploration, we started with
a simple scenario—additive code changes. These changes add
new code at, before, or after a particular location but do not
remove or modify the existing tokens. For instance, Figure 4
shows two additive code changes. The first fills in the con-
structor parameters and assignments in an empty constructor.
The second, adds a new parameter, and its corresponding
assignment to a constructor. Note that in both examples, the
added code is not continuous. Instead, the change places the
new code in between existing content.

We consider these changes simpler to display using an inline
interface because they do not modify any existing token, and
thus, we can reuse the gray-text interface, which so far was
used only for displaying suggestions that insert continuous
sequence of tokens such as the one in Figure 1. Therefore,

Thttps://www.figma.com/

we start our design exploration with user testing gray-text
interface for additive code change suggestions.

1) Experiment: Recently, we introduced a new feature in
IntelliCode to detect when the developer is manually per-
forming a change that is already implemented as a Visual
Studio refactoring and surface the change to the developer.
The underlining program synthesis technology that enables
this feature is described in [16]. We selected two additive
suggestions produced by this feature to test the gray text
experience: Complete constructor and Add parameters to
constructor (Figure 4). We performed just one iteration of
design exploration with a prototype containing the inline gray-
text design. Note that since these changes are also available
through the default set of refactorings in Visual Studio and
the participant could also choose to use the lightbulb if they
were aware of this option. We conducted a user study with 12
participants (P;1— P;12)?. Each participant had to perform two
tasks: (1) Add a constructor to a given class, and initialize all
the properties of the constructor by using parameters passed
to the constructor and (2) Add two new properties to the class,
and edit the existing constructor to initialize the newly added
properties. Both tasks can be performed by existing VS tools
by using the lightbulb menu.

2) Results: Nine of the 12 participants used the inline sug-
gestions (experiment) to finish both the tasks. Two participants
(P;7 and P;8) did not notice the inline suggestions as they
were looking at the keyboard as they typed. P;12 used the
lightbulb icon (baseline) —the only participant to do so. This
shows that the inline suggestions are more discoverable than
suggestions in lightbulb icon. During the informal interview
after the tasks, all of the 12 participants mentioned they
preferred using the inline suggestions (for the three partici-
pants who missed seeing the suggestion while performing the
tasks, we showed a preview). For instance, P;3 said “I like
these suggestions. I don’t even have to code. I just have to
press TAB. That’s basically all 1 want to do.” During this
informal interview, all of the 9 participants who used the inline
suggestions were able to explain the proposed suggestion
to us for both the continuous and discontinuous scenarios.
One participant (F;5) also drew a parallel with their prior
experience with a tool that uses inline suggestion by saying,
“This feels like Copilot, 1 have tried the beta version for
some personal projects. I like this—it reminds me of Copilot.”
Seven participants explicitly showed approval and delight
when performing the task. However one participant (FP;10)
expressed concerns over the usefulness of such suggestions for
the given scenario: “I’m not entirely sure if that is a huge time
saver though. Maybe just a few seconds. It’s nice.” Further,
three participants (P;2, P;9, P;10) mentioned they will not be
comfortable accepting the suggestion if the suggestion is not
fully visible in the screen — especially for the discontinuous
scenario.

>The subscript in participant codes represent the stages of design explo-
ration. i - additive change, e - single-line change, m - multi-line change (ref
Table I)

Overall, this iteration of our design process acted to validate
gray-text in a new context. The gray-text interface is familiar
to most developers and hence, they were able to understand the
suggestions even in the unfamiliar scenario of non-contiguous
insertions. This points us to reuse and adapt existing inter-
faces in other suggestion categories (single-line and multi-line
changes). Another take-away from this iteration comes from
the comments made by P;2, P;9, and P;10: developers will
not trust or accept suggestions that they are not able to easily
validate at a glance.

B. Stage II: Designs for single-line code change suggestions

In this stage of the design exploration, we investi-
gated code-change suggestions, but which span only a sin-
gle line. The major designs we explored in this stage
are depicted in Figure 5. Here, the condition inside
the if statement is originally obstacle != null &&
obstacle.IsValid and the suggestion is to change it
to ObjectNotNullAndvalid (obstacle). The designs
are described as follows:

o Gray-text for changes. Since we had good success with
the gray-text interface for additive code changes, we
explored a similar design for single-line code change in
Fig 5 (c). Here, only the modified version of the code is
presented to the user, with new tokens in gray text. The
deleted tokens are not shown.

o Strike-through. We borrowed a strike-through based de-
sign that is already popular in Al based text suggestion
tools like Grammarly [17]. In this design, existing code
that will be replaced is struck out and we show a gray-
text for the proposed code to the right side of the existing
code (Fig 5(d)).

o Side-by-Side Diff-view. We also tested designs based
on the traditional red-green colored diff views used in
revision control software such as Git or Perforce. The
side-by-side diff-view (Fig 5(a)) is similar to the strike-
through view, but using colors instead.

o In-place diff-view. The last view (Fig 5(b)) uses red-green
colors to show deleted and inserted tokens on the same
line, while retaining the tokens common to both original
and modified code in regular black text. For example, the
token obstacle is common in the two version and not
shown in either red or green.

For this stage, we conducted two iterations of design explo-
ration. In the first iteration, we explored all the different types
of designs mentioned above, and in the second iteration, we
refined the best designs from Iteration I for special scenarios
and corner cases.

1) Experiment: In the first iteration, we conducted a user
study with 8 participants (P.1 - P.8) to test the usability of
gray-text, strike through, and diff view designs. We integrated
these designs into the IntelliCode Suggestions feature, which
can detect when developers are performing repetitive code
changes to multiple locations, and generate suggestions to
automate the remaining ones. This feature is powered by the
Blue-Pencil technique presented in [8]. Each participant had

Tab accept

if (jobstacle != null && obstacle.IsValid) — [ObjectNotNullAndValid(obstacle) (a)
Tab accept
if (objectNotNullAndvalid(obstacle)|[!= null & obstacle.IsValid) (b)

Tab accept
if (|Objcct/\/atNuLLAnd\/aLid(ubstacLe))

(c)

Tab accept

if (ebstacl

t=—null-g&-obstacle Isvalid) — ObjectNotNullAndvalid(obstacle) (d)
Figure 5: Designs for single-line code change suggestions:
Iteration 1, (a) Side-by-side diff-view (b) In-place token based
diff-view (c) gray-text design that directly shows the final code.
(d) Strike-through design inspired by both gray-text and diff-
view designs.

to perform a series of repetitive code changes in multiple
locations across the file in [8]. As soon as the participant
performs the second change, IntelliCode detects the repetition
and when the participant goes to the next locations, IntelliCode
offers a suggestion to automate the change. Participants tried
all the designs using different code changes. We counterbal-
anced the order of the designs for each participant. Similarly,
for the second iteration, we tested the usability of the refined
designs for showing code change suggestions for longer lines
of code by conducting a user study with 8 participants (P9
- P.16). The participant performed a similar multi-location
code change as the previous iteration, however, this change
was longer than the previous iteration (over 80 characters).

2) Results: Of the 16 participants across both the iterations,
ten participants immediately noticed and accepted the inline
suggestion in the very first attempt. Five participants (P.6,
P.7, P10, P11, P.16) noticed the suggestion after showing
it for the second time. Further, of the 16 participants, only 2
participants (P.6, P.10) knew that IntelliCode offered these
suggestions under the lightbulbs. Still, both participants did
not remember to use it. This shows that inline suggestions do
not have the same discoverability issue that light-bulb based
interfaces suffer.

With respect to the best design for showing single-line code
change suggestions, all of the eight participants in the first
iteration preferred the side-by-side diff view based design (Fig-
ure 5(a)) over designs using gray-text or strike-through. We
discuss the reasons below. For longer code suggestions, where
side-by-side diff-view cannot be rendered due to unavailability
of horizontal space, five of the eight participants (P11, P.12,
P.14, P.15, P.16) in second iteration preferred to see the
suggestion rendered top to bottom, where the proposed code
appears below the existing code. Next, we discuss the reasons
below for these preferences.

a) Juxtaposing old and new code: In the first iteration,
five of the eight participants (P.1, P.2, P.3, P.4, P.8)
explicitly mentioned they would always want to clearly see
their existing code juxtaposed with the proposed code. This
helps them understand what code is being replaced since they
do not always remember the old code, and the juxtaposition

increases participant’s confidence in accepting the suggestions
since they exactly understand the proposed change. Designs
that directly renders the suggested code in-place as gray-text
violates this expectation. P.4 said “This is very unintuitive. It
doesn’t even tell me what it is replacing. I'm kind of left to
guess myself. I don’t think I will be confident in taking this
suggestion.” Participants also want to first understand the code
that will removed then look at the proposed modification. For
shorter code suggestions, this can be shown side-by-side, and
for longer code lines, participants preferred to see the diff-view
top to bottom. P.9 said “Showing suggested code below the
existing code feels more natural compared to the opposite. It’s
the way I read - the old code should be above.”

b) Familiarity with diff-view: In the first iteration, five
of the eight participants (P.2, P.3, P.4, P.6, P.8) explic-
itly mentioned that the designs that use the diff-view based
interface follows a familiar visual motif, and makes it easier
to understand the red-green color coding instantly and know
the code that is proposed to be removed and the code that is
proposed to be added by the suggestion. P4 said, “Izs telling
me you are going to replace the text highlighted in red with the
text highlighted in green. The arrow shows that it is a replace
operation.” Three participants (P.3, P.4, P.6) also explicitly
referred to the familiarity with version control systems, and
how colors play an important role in comprehension.

¢) Mangling participants code: Participants did not like
any kind of modifications (or mangling) to their current state of
the code, even if transient. Six of eight participants in the first
iteration did not prefer the designs that used the in-place diff-
view (Figure 5(b)) or the gray-text view (Figure 5(c)), because
they found that these designs mangled their code making the
designs feel intrusive and confusing. P.3 said, “It kind of
makes it confusing since you are criss-crossing the streams,
you are mixing the old and new code, as compared to two
different states that are clear in the previous design.” Similarly,
none of the eight participants in the first iteration preferred the
design with strike-through, since they felt striking the code felt
harsh and commanding. Participants also felt that the code
editor is suggesting that the code they wrote is incorrect. P, 1
said, “I don’t want the code I have written to be struck out
and be overwritten by something else, I want the suggestions
to be subtle.”

C. Stage III: Designs for multi-line code change suggestions

In this stage, we expand the designs to multi-line code
change suggestions. In this stage, we conducted four iterations
of design exploration. Figure 6 shows some of the designs
tested in the first two iterations. As participants predominantly
preferred the diff-view based designs in the previous stage,
we explored diff view based designs for multi-line changes
(Figure 6(a)). When a suggestion contained many lines, diff-
views move the developer’s existing code around a lot. To
explore whether this is a real issue and how much it bothers
developers, we also designed some popup window based
designs (Figure 6(b,c)) that do not affect the code structure.
Popup window based designs have been used previously to

show code from other source files or different parts of the
same source file for commands such as “Peek Definition”.

During our design process, participants also expressed con-
cerns over visual clutter when showing long suggestions.
Hence to prevent user distraction we also designed a progres-
sive reveal variant (Figure 6(d)), where we only show a hint
bar, and the user has to initiate the hint to see the suggestion.
Unlike lightbulb suggestions, these highlight the current code
block where the suggestion is available inline, and is very
conspicuous.

All the designs tested in the first 2 iterations are general
designs for any multi-line code change suggestion. However,
some participants were concerned about visual clutter for long
blocks of code change shown as inline suggestions. Hence, we
wanted to create a lightweight Ul But instead of focusing on
any multi-line code change suggestion, we limited ourselves to
a specific kind of suggestions where the code change though
spread across multiple lines, is limited to only few (similar)
tokens per line.

We found that for common multi-line code change patterns
such as copy-paste-modify [18], where the user pastes a
copied code template and edit it to suit the current context,
the changes generally only include few tokens in the whole
code block. Therefore, to show such suggestions inline, we
took inspiration from template auto-completion supported by
many IDEs including Visual Studio. Template auto-completion
generates a skeleton structure of the code pre-filled with
highlighted holes/voids that correspond to the core logic and
the user sequentially completes these holes. For instance,
Figure 7 shows a block of code defined for verifying the
validity of the obstacle object which the user copies from
another location in the code repository and pastes in the current
location. They then proceed to modify the code to replace all
the instances of the obstacle object to player. This code
change only modifies few tokens in each line, and we can use
the template interface (as shown in Figure 7(a, b)) to render
the code change suggestion instead of rending the whole dift-
view which is a heavier Ul. To understand the feasibility of
template based interfaces, we conducted two more iterations
of design exploration. In the third iteration of this stage we
compared diff-view (Figure 6(a)) and two template based de-
signs. Figure 7(a) shows a template based design that indicates
the actual code change using hint bar explanation, Figure 7(b)
indicated the code change by automatically previewing the
change directly. In the fourth iteration we refined the designs
to highlight the scope of the suggestion better. Figure 7 shows
the designs tested in the last two iterations of this exploration.

1) Experiment: For the first iteration, we conducted a user
study with 8 participants (P,,1 - P,,8) to test the usability
of the diff-view and popup designs. The participants had to
perform a refactoring task for each design that involved editing
multiple lines of code in multiple locations across the code file.
Similarly for the second iteration, we tested the usability of
the refined design with 6 participants (P,,9 - P,,,14) where the
participants performed the similar task as in first iteration but
for a longer refactoring with over ten lines of code. For the

third iteration, we conducted a user study with 11 participants
(P15 - P, 25) to test the usability of template based designs.
The participants had to perform a one copy-paste-modify
change task for each design prototype. Similarly for the fourth
iteration, we tested the usability of the refined designs with 8
participants (P,,,26 - P,,33) where the participants performed
the same task as in third iteration.

2) Results: Of the eight participants in the first iteration,
five participants (P,1, Py,3, Pn4, P,6, P,,7) preferred the
extended diff-view based design over the other designs, two
participants (Pp,2, P,,5) preferred to see the diff-view pro-
gressively revealed using a hint bar, and only one participant
(P, 8) preferred see the suggestion in a popup window. We
discuss the reasons below.

For very long code change suggestion, participants took
long time to understand the proposed suggestion. For in-
stance, P,,14 took around 10 seconds to read and evaluate
the suggestion presented, and exclaimed “So, first thing I'm
thinking is to take it in and read the code. I'm looking at
the suggestion and compare it to understand the changes.”.
Though all participants finally were able to understand and act
on the suggestions, eight participants (P,,1, P,,,5, Py, 7, P8,
P11, P12, P,,13, P,,14) expressed concerns that longer
suggestions in other context can be distracting. P,,13 said
“I'm distrustful of things I don’t understand. If I'm writing
code, and boom, this thing pops up. Won't it interrupt my
work?”. Though the progressive reveal design could make it
less cluttered/intrusive for longer suggestions, participants did
not prefer to take an extra step to see the suggestion. Further,
participants noted that progressive reveal option reintroduced
the discoverability problem by not showing the suggestions
directly in the editor. This is where our redesign using template
based suggestions excelled. Seven of the eleven participants
(P15, P18, P,19, P20, P21, P,23, P,,25) preferred
the design using the default template behavior over other
designs, four participants (P,,16, P,,17, P22, P,,24) pre-
ferred the template based design with automatic preview and
no participant preferred to use the diff-view based design
borrowed from the previous iteration. We discuss the reasons
for their preference below.

a) Diff-view vs. popup view: Seven of the eight par-
ticipants in the first iteration (except P,,8) did not like the
suggestion shown in a popup view. Four participants (P,,1,
P4, P,,6, P,,7) mentioned that the popup view covered the
code under the window, and they wanted to see all the code
lines to be confident in accepting the suggestion. For example,
P,,6 said “One issue is the popup hides the code below. If I'm
making the code change, I would like to know how the code
flows after the change. Showing the rest of the code is very
important to understand that.” All of the participants preferred
to see red-green color coding for the diff-view compared to the
blue based color coding. P,,4 said “Personally I will still go
with [red-green] instead of [blue] due to visibility. It is clear
what is getting replaced with the way it is highlighted.”.

b) Glanceable: In the informal interview, we asked par-
ticipants what is the longest suggestion they would tolerate

19 obstaclebjects. Forfach(obstac]
Tab to accept

20 {

2 T |if (obstacle != null && obstacle.IsValid)

22 {

23 if (obstacle.XPos < @ [| obstacle.YPos < @ [| obstacle.XPos > 200 || obstacle.YPos > 26@)
24 {

25 obstacle.TsValid = false;

26

obstacleObjects. ForEach(obstacle =>

{
21 = [Lf (obstacle !'= null && obstacle.IsValid)
2 0
23 if (obstacle.XPos < @ || obstacle.YPos < @ || obstacle.XPos > 268 || obstacle.¥Pos > 266)

{
obstacle. IsValid = false;

27 b

27 3 1 Refactor Preview. Tab to accept Gl +] for next suggestion (Ctrl + [for previous suggestion X
if OhlwaOfNuliAndVahd(vbstaclE)\) 30 if (ObjectNothullAndvValid(obstacle))
31
if (obstacle.IsoutOfFrame () 32 if (obstacle.IsOutOfframe())
[obstacle.SetInvalid(); 34 = obstacle.SetTnvalid();
} * ¥
s » a (b)
3s Birdobstacle
19 obstacleObjects.ForEach(obstacle =>
20 ¢
21 3 fif (obstacle != null 8& obstacle.IsValid)
23 if (obstacle.XPos < ® || obstacle.YPos < @ || obstacle.XPos > 200 || obstacle.YPos > 200)
2 { 19 Obstr 2 onmse e etle o
25 obstacle.Isvalid = false;) CEnLERNS) see suggestion
26 3 71 & [if (obstacle 1= null && obstacle.IsValid)
2 H
Refactor Preview. Tab to accept [(Ctnl +] for next suggestion Ctel + [for previous suggestion X if (obstacle.XPos < @ || obstacle.YPos < @ || obstacle.XPos > 208 || obstacle.YPos > 200)

0 (EF_(ObjectNothullAndvalid (obstacle)))

[_if (obstacle. Tsoutofrrame()))
34 B obstacle. SetInvalid();]
3

€ [}

(c)

Birdobstacle

GRUR

obstacle.Isvalid = false;

(d)

Figure 6: Designs for multi-line code change suggestions: Iteration 1 (a) Extended diff-view. (b) diff-view on pop-up window.
(c) diff-view on pop-up window with blue color scheme. (d) Progressive reveal hint bar, where the suggestion will only show

after user takes an action.

Tab to rename obstacle to player
if (player|!= null && obstacle.IsValid && isObstaclevalid())
{

if (obstacle.XPos < @ || obstacle.YPos < @ || obstacle.XPos > 200 || obstacle.YPos > 200)
{
obstacle.IsvValid = false;
}
}

(@

Tab to rename obstacle to player

if (player| != null & player.IsValid && isplayervalid())
{
if (player.XPos < @ || player.YPos < @ || player.XPos > 200 || player.YPos > 200)

player.IsValid = false;
(b)

Figure 7: Designs for template based code change suggestions:
Iteration 1. (a) Template based design with scope markers. (b)
Template based design with automatic preview of suggestion.

within the code editor? Five of the six participants (P,,9 -
P,,13) mentioned they would definitely not want to scroll
to see all of the suggestion, and any suggestion shown on
the screen should be glanceable. P,,11 said “As [said, it’s a
matter of seeing it in one glance. If it’s too long and I have
to scroll to compare, then it will take more time to review.”
Participants also noted that for very long suggestion, they also
have to keep lot of code in memory to compare — which
affects suggestion comprehension.

c) Diff view vs. template based design: None of the
eleven participants preferred to use diff-view compare to the
template-based prototype due to three main reasons. 1) Six
Participants (P,,15, P,,16, P,,18, P21, P,,22, P,,24) felt
the UI was busy, cluttered, and overwhelming. 2) Three
participants (P,,17, P,,20, P,,23) mentioned that they did
not obtain any new information from [diff-view] to justify
the added complexity. P,,20 said “I don’t feel like it gave
me any extra information with all that extra code. With [the
template design], everything was highlighted, and I know what

was going to happen. That was enough information.” 3) Five
participants (P,,18, P,19, P,,20, P,,23, P,,25) felt like the
suggestion was duplicating code when seeing the diff-view.

d) Reference to template experience: Nine participants
immediately compared their experience of doing the task to the
template interface experience present in Visual Studio when
they saw either of the template based designs. The familiarity
with the template experience made it easy for the participants
to understand the proposed changes. P,,21 said “My first
though is that it mimics the functionality of templates. It
triggered familiarity with templates. I use it a lot. I understand
what it says.” Similarly P,,18 said “I'm seeing the highlight
I usually see for rename refactoring [which uses the template
interface]. I think I can just start typing.”. However, four
participants (P,,,16, P,,18, P,,19, P,,23) expressed some
confusion over the scope of the suggestion. For instance, P,,23
incorrectly claimed “I'm only expecting this to happen over
the function / method I'm in.” though the scope was just in
the pasted code. We addressed this in the designs explored
in the last iteration by adding a horizontal scope marker
(Figure 7(a)).

e) Automatic preview: Seven of the participants who
preferred the default template design over the design with
automatic preview mentioned they do not want to see other
locations automatically changed. Since automatic preview ren-
ders over the old code, they cannot determine if the proposed
change at the given location is valid. P,,,18 said “I would
rather prefer [diff-view] over [automatic preview], because
the [automatic preview] was not giving me the option to see
what was there before.”

IV. FIELD DEPLOYMENT

We selected the most promising interfaces tested in our
design exploration to be fully implemented and tested in

production. As of this writing, we were able to successfully
deploy the interface we chose in Stage 1 in Visual Studio 2022.
Additionally, we have released the interface selected in Stage
2 in Visual Studio 2022 Preview, which is the preliminary
version of Visual Studio’s next release. We share the field
deployment usage numbers in this section.

1) Inline code insertion suggestions: We have released
the gray-text interface for all code changes produced by
IntelliCode that can be classified as code insertions in Visual
Studio®. This includes not only the code changes we tested in
our user studies (Figure 4) but any other repetitive code change
suggested by IntelliCode that just inserts code. The feature
has been used by hundreds of thousands of developers every
month. The release had a big impact on our usage numbers.
Even though code insert suggestions correspond to only 25%
of the code change suggestions produced by IntelliCode, its
usage with the gray text interface corresponds to 60% of total
usage of code change suggestions. Additionally, this interface
led to a 3.5x increase in regular users of the feature.

2) Inline single-line code change suggestions: We deployed
the diff-view experience (Figure 5(a)) for the single-line code
change suggestions in Visual Studio 2022 Preview. We con-
ducted an A/B test over the course of 2 weeks to evaluate the
impact of this new feature. Over this period, several thousands
of developers used the feature, which lead to an 176% increase
in code change suggestions accepted by users and 29% more
regular users.

Both deployments show a significant positive impact on the
usage of IntelliCode because of the new user experience based
on inline interfaces.

V. DESIGN PRINCIPLES FOR INLINE CODE SUGGESTIONS

Informed by the qualitative data from our design explo-
ration, we inductively propose five design principles for future
tools that aim to implement inline code suggestions (Table II).
For some of the design principles, we also draw parallel to
design principles from cognitive dimensions of notations [19],
which are highlighted using this typeset.

A. Glanceable suggestions

With code editors continuously adding many code sug-
gestion tools, and especially Al powered tools that can dy-
namically suggest for endless scenarios, it is not feasible for
the user to keep track of all the available code suggestion
tools. Tying to guess all the refactoring a user can expect in
the lightbulb in the current context adds a lot of cognitive
load. For the suggestion to be discoverable, it needs to be
glanceable. This principle is consistent with cognitive dimen-
sions of notations by increasing visibility and decreasing
viscosity. Inline code suggestions are glanceable by being
directly rendered in the code editor, taking the user’s guess out
of the equation. Of the 61 participants in the user study, only
two participant knew that the suggestion was already present
in the lightbulb which they could have used to perform the

3https://devblogs.microsoft.com/visualstudio/
just-in-time-refactoring-intellicode- suggestions/

Design Principle Explanation

Glanceable Suggestions should be proactively visible to

Suggestions the user to make it easy to discover and take
action.

Juxtaposition The suggestion should explicitly indicate and

juxtapose the existing code affected by the
suggestion and the proposed code to improve
user comprehension and support quick action.
Reusing existing familiar interface elements
to indicate proposed changes reduces visual
clutter, improves comprehension, and reduces
cognitive load.

The users should be able to see the whole
suggestion when taking the action to prevent
premature-commitment.

The user should be able to snooze inline
suggestions to prevent interruptions when user
intends.

Simplicity through
familiarity

Sufficient Visibility for
validation

Snoozability of
suggestions

Table II: Our design principles for inline code suggestions.

task. Whereas, 53 of the 61 participant immediately noticed
and accepted the inline suggestion.

P,12: 1 rarely use lightbulb since most of the time,
nothing exists for the things I want to do. With what
you are showing I have to go through two menus to
see that there are 5 possible edits. I will never know
to look and I would normally just do it myself

P,11: ...[with inline suggestions] Its very quick just
press this button, versus me having to think about
oh I want to do this via a tool, and I'll have to click
a lightbulb and scroll through to identify which one
is going to do this for me.

B. Juxtaposition of original and suggested code

For the users to understand the proposed suggestion, they
need to clearly understand 1) the scope of the code being
affected by the suggestion, 2) what the affected code is,
and 3) the newly proposed code. It is very important to
Jjuxtapose the original and the suggested code to help the user
compare and evaluate the suggestion. Without understanding
the original code that is being affected, the user is forced to
prematurely commit without fully understanding how
it affects the code. Prior research has shown programmers
want to juxtapose code during various tasks [20], [21]. This
juxtaposition also increases trust in the tool by making all the
changes explicitly visible, helping the users take appropriate
decisions. In designs where we failed to highlight or overrode
the original code with the proposed edit, participants were
more confused and took more time to understand the change
due to the added hidden—-dependency. To work around
this, participants generally accept the code and perform an
undo to see the original code, and repeat this cycle a few
times to understand the suggestion.

P.2: By seeing the old code, I can easily understand
what is being changed, otherwise I'll have to press
undo and redo to compare with the previous code.
I can’t trust the suggestion without seeing what is
going to change.

P,1: By automatically replacing my code it feels like
the tool is forcing it upon me. Don’t tell me what
to do, support me with what I do.

We achieve this by using diff-view based designs where
the original code and the suggested code are juxtaposed either
side-by-side or top-to-bottom, helping the user to compare and
evaluate the suggestion. We also make use of the familiar red-
green color coding to help with the comprehension, following
the role—expressiveness principle.

P.6: When you are checking code, and you are
doing a file compare, things are in red and green,
and you know exactly what has changed. The
colors are really standard, and it really easy to see
that. The other designs aren’t quick.

C. Simplicity through familiarity

Code editors are visually busy interfaces. At any given
time there are many window panes showing errors, warnings,
debugging information etc. The actual code also has visual
artifacts like syntax highlighting, reference information run-
time information etc. It is vital to reduce the visual clutter
and visual redundancy added by our inline suggestion. This
can be achieved by reusing familiar visual colors and in-
terfaces that elicit the same understanding as their original
use. When designing for the diff-view, we only highlight
part of the expression that is actually changing and help
the user to understand the change implicitly by using the
familiarity of the red-green color coding used in source-
control interfaces, thereby reducing the visual clutter (akin to
role—-expressiveness).

P.13: We have a long line of code and it is telling
me just the code that is being changed. I don’t have
to focus on the whole line of code, and just focus
on the part that is changing.

P.15: T don’t like highlighting the whole line. It
makes sense to just show what the change is

What if we cannot afford to juxtapose all the new code
due to space constraints or visual clutter? When applying the
Juxtaposition principle for multi-line code change suggestions,
instead of rendering the new code completely, we exploited the
users implicit understanding of the familiar template interface
and just showed a hint bar explaining the change. This allowed
the user to compare and evaluate the proposed suggestion
without having to materially see the whole proposed code.

P,,19: The highlight means that, the tool went
through the rest of the code in scope, and is sug-
gesting everything else that is to replaced.

P,,21: My first thought is that it mimics the func-
tionality of templates. It triggered familiarity with
templates. I use templates a lot.

Instead, in the designs where we did not exploit this famil-
iarity and rendered the all the code via diff view, participants
felt they did not gain any new information with the added
visual clutter, and it just made them feel overwhelmed.

P,,20: ...for this scenario why would you show
[diff-view] when the [template-based] designs give
all the information in a simpler view.

P,,21: To me this is a little too busy, because it is
taking my eye away from where the code is, and I'm
losing the context in a way.

D. Sufficient visibility for validation

For the users to make an informed decision and prevent
premature commitment, all the information should be
visible to the user. Though in retrospect this sounds obvious,
there are some subtle visual expectations from the users.

P,,9: 1 like it to be verbose than guesswork, so the
more information you show its better. I clearly don’t
want to refactor something without understating all
the changes.

Participants did not like the designs where they have to
horizontally or vertically scroll to see the entire suggestion.
Moreover, many participants also mentioned they would sim-
ply ignore the suggestions if it takes them more than a few
seconds to understand and act on it.

P,,11: As I said, it’s a matter of seeing it in one
glance. If it’s too long and I have to scroll to
compare, then it will take more time to review.
P,,12: I'm okay for multiple lines, but it will take
me a lot more time to review longer code change.
But if we really have to scroll, then it will not be
fine for me. I might lose understanding of what I
was working on. That is not okay.

Participants also want to see the context surrounding where
the suggestion will be inserted.

P,,6 said One issue is the popup hides the code
below. If I’'m making the code change, I would
like to know how the code flows after the change.
Showing the rest of the code is very important to
understand that.

E. Snoozability of suggestions

Though inline suggestion improve the discoverability of
code edit tools, it can be interrupting if the user is in code
authoring mode and has no intent to edit or refactor the code.
It is vital to understand the users intent. Though AI models
are now starting to understand user’s editing patterns, it is
still difficult to understand user’s intent. In these scenarios,
seven participants requested a snooze feature where they can
pause the inline suggestions for a period of time or for the
current session. Some participants also suggested to vary the
frequency of inline suggestions based on their recent accep-
tance rate. For example, P.14 asked for a way to suppress
suggestions and P.10 asked for a 30-minute snooze feature.

They also wanted to be able to pick and choose the specific
code edit tools supported by the inline suggestions. Though
prior work has shown majority of the users do not wish to
configure refactoring tools [10], it can be useful for power
users who wish to tune it to their preference.

P;1: Since I'm seeing it for the first time, I'm
fascinated - if it pops up frequently, or things I don’t
want to do then I might turn it off. If there is an
option to control where all I can see, then I will be
using it appropriately.

Making the suggestions easy to dismiss or ignore is another
way to reduce the distraction. Participants mentioned if we
make the suggestions less prominent, they can ignore when
they do not want to.

P.7: 1 think the experience is positive as long as
the suggestions is just out of the way, ideally a little
muted. Many times it may think it is smart, but it’s
not. So make it less prominent.

VI. RELATED WORK

Modern code editors support many tens of code suggestion
tools, and are constantly updated with more tools with every
passing year. Code suggestion tools provide numerous benefits
in improving the speed and accuracy of creating and main-
taining software [22] by helping programmers prevent code
smells, make the code modular, migrate to new API versions
and more [23]. In fact Fowler [23] catalogs 72 code suggestion
(refactoring) tools that can produce significant benefits to code
that are now available as a part of any modern IDE. It is
a widely known fact that professional programmers refactor
their code frequently [22]. However, these tools have been
found to be severely underused by programmers [10], [11],
[24]. By analyzing 240,000 tool usages in Eclipse, Murphy-
Hill et al. [10] found that only 8 of 23 code suggestion
tools surveyed have any significant usage, with RENAME
refactoring accounting for over 28% of usage. One of the
main reasons for this under-use is due to the poor usability of
these tools [10], [11]; RENAME tool may be performed most
often due to the simplicity of the user interface. We discuss
the different aspects of usability that affect the usage of code
suggestion tools in this section.

Discoverability: Currently these code suggestions shown via
menus like the lightbulb icon (Figure 2) in Visual studio, anal-
ogous to Quick Assist in Eclipse, are not discoverable [25].
The user can only know about suggestions offered in the quick-
assist menu by frequently checking the menu or learning about
its features from other sources. In general, the lack of aware-
ness of all the code change tools present in the code editor
leads to disuse of the tool [10], [25]. By silently overloading
the existing suggestions menu with more and more code edit
tools exacerbates the discoverability problem, since people
don’t know or expect to see these suggestions in the current
interface. In our work, we show that in-line suggestions can
overcome this discoverability problem by proactively showing
code suggestions in-line in the code editor.

Context-switching: Prior work has also found that affor-
dances of current tools force the user’s attention away from the
task [10]-[12]. Murphy-Hill et al. [11] found that the context
switching is required to manually initiate the code edit tools,
and this process distracts the programmer from their primary
programming task. This has a particularly strong effect when

the suggestions are hidden in nested menus. Using a hot-key
might seem to be an ideal way to speed up the initiation, but
hot keys can be difficult to remember [26]. In our work, the
use of in-line code suggestions precludes the context switching
by directly showing the suggestions in the editor.

Cognitive preconditions: There are several cognitive pre-
conditions (CP) required for a successfully applying a code
suggestion [12] First, the programmer must realize they need
to perform an edit [CP1]. Second, they should know the
support for such an edit exists [CP2]. Third, they should
know that the code edit is applicable in the current context
[CP3]. Fourth, they should believe that initiating and accepting
the code suggestion is faster than performing it manually
[CP4]. Fifth, they must trust that the suggestion will behave as
intended [CP5], and finally, they must be willing to context-
switch away from writing code to invoke the tool [CP6]. In our
work, we found that showing code suggestions in-line helps
the user by supporting the first three cognitive preconditions
([CP1-CP3]) by proactively showing the suggestion in the
editor. In-line suggestions also make it easier for users to
evaluate and [CP5] by juxtaposing the current code with the
proposed suggestion. Finally in-line suggestions makes [CP6,
CP4] irrelevant since the action of accepting or rejecting the
suggestion is instant.

In addition, with the advent of highly sophisticated code
suggestion tools powered by Al, code editors can now of-
fer smarter refactorings by learning programmer’s code edit
patterns on the fly [16], [27]. These tools have the poten-
tial to significantly improve developer productivity. However,
currently, these Al assisted code suggestion tools continue to
piggyback on existing editor interfaces which still suffer from
the usability problems mentioned above. It is vital to improve
the usability of refactoring interfaces.

VII. CONCLUSION

In this paper, we presented a systematic design exploration
for effectively showing Al-based code suggestion using inline
interfaces. Through exploratory user studies and usage data
from field deployments, we show that inline suggestions
overcome the discoverability problem faced by existing code
suggestion tools by meeting the users in their flow. The
field deployments show a drastic increase in user reach and
acceptance rate demonstrating the potential of inline code
refactorings. Informed by the qualitative data form our user
studies, We also propose five key design guidelines for future
tools that aim to implement inline suggestions for any code
editor. Moving forward, we hope that the design principles
we proposed will help future code suggestion tool builders
as their foundation for designing inline suggestions. With the
recent advancements in Al powered code suggestion tools, we
believe our designs and our design principles will be timely
and help fill an important gap that enables tool builders to
explore impactful ways of empowering programmers around
the world.

ACKNOWLEDGMENT

We sincerely thank all the members of Microsoft PROSE,
Microsoft Roslyn, and Microsoft Intellicode teams for their
support and resources provided to make this research possible.
This work was partially funded by NSF grant 2107391.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science

Foundation.
REFERENCES

[1] “Visual studio 2022, https://visualstudio.microsoft.com/vs/, 2022, ac-
cessed: 2022-9-13.

[2] “Visual studio intellicode: Visual studio,” May 2022. [Online].
Available: https://visualstudio.microsoft.com/services/intellicode/

[3] “Github copilot - your ai pair programmer,” Jun 2021, accessed:
2022-1-8. [Online]. Available: https://github.com/features/copilot

[4] “Top 10 features of visual studio 2022 May
2022. [Online]. Available: https://inceptivetechnologies.com/blog/

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

top- 10-features-of-visual-studio-2022/

P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in CHI Conference on Human Factors in Computing
Systems Extended Abstracts, 2022, pp. 1-7.

S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” arXiv preprint
arXiv:2206.15000, 2022.

H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Can
openai codex and other large language models help us fix security bugs?”
arXiv preprint arXiv:2112.02125, 2021.

A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares,
A. Tiwari, and A. Udupa, “On the fly synthesis of edit suggestions,”
Proceedings of the ACM on Programming Languages, vol. 3, no.
OOPSLA, pp. 1-29, 2019.

X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung,
N. Nagappan, and A. Tiwari, “Feedback-driven semi-supervised synthe-
sis of program transformations,” Proc. ACM Program. Lang., vol. 4, no.
OOPSLA, pp. 1-30, Nov. 2020.

E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Trans. Software Eng., vol. 38, no. 1, pp. 5-18, Jan.
2012.

E. Murphy-Hill and A. P. Black, “Making refactoring tools part of the
programming workflow,” http://citeseerx.ist.psu.edu > viewdoc > sum-
maryhttp://citeseerx.ist.psu.edu > viewdoc > summary, 2008.

S. R. Foster, W. G. Griswold, and S. Lerner, “WitchDoctor: IDE
support for real-time auto-completion of refactorings,” in 2012 34th

International Conference on Software Engineering (ICSE). 1EEE, Jun.
2012.

J. Nielsen, “Parallel & iterative design + competitive
testing = high usability,” https://www.nngroup.com/articles/

parallel-and-iterative-design/, Jan. 2011, accessed: 2022-9-10.

L. Molin, “Wizard-of-Oz prototyping for co-operative interaction de-
sign of graphical user interfaces,” in Proceedings of the third Nordic
conference on Human-computer interaction, ser. NordiCHI '04. New
York, NY, USA: Association for Computing Machinery, Oct. 2004, pp.
425-428.

P. Groenewegen, “Discover quick actions for common tasks as
you type, with intellicode,” https://devblogs.microsoft.com/visualstudio/
discover-quick-action-intellicode/, accessed: 2022-10-13.

Y. Zhang, Y. Bajpai, P. Gupta, A. Ketkar, M. Allamanis, T. Barik,
S. Gulwani, A. Radhakrishna, M. Raza, G. Soares, and A. Tiwari,
“Overwatch: Learning patterns in code edit sequences,” Proceedings of
the ACM on Programming Languages, no. OOPSLA, Jul. 2022.
“Under the hood of the grammarly editor, part two: How
suggestions ~ work,” https://www.grammarly.com/blog/engineering/
how-suggestions-work- grammarly-editor/, Feb. 2022, accessed: 2022-
9-11.

K. Narasimhan and C. Reichenbach, “Copy and paste redeemed (t),” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), Nov. 2015, pp. 630-640.

[19]

(20]

[21]

[22]
[23]
[24]

[25]

[26]

(27]

T. Green and M. Petre, “Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework,” Journal of
Visual Languages & Computing, vol. 7, no. 2, pp. 131-174, 1996.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$1045926X96900099

A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, “Code bubbles:
Rethinking the user interface paradigm of integrated development
environments,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE *10. New
York, NY, USA: Association for Computing Machinery, 2010, p.
455-464. [Online]. Available: https://doi.org/10.1145/1806799.1806866
A. Z. Henley, S. D. Fleming, and M. V. Luong, “Toward principles
for the design of navigation affordances in code editors: An empirical
investigation,” in Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems, ser. CHI "17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 5690-5702. [Online].
Available: https://doi.org/10.1145/3025453.3025645

E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose,”
IEEE Softw., vol. 25, no. 5, pp. 38—44, Sep. 2008.

M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

A. P. Black, “Better refactoring tools for a better refactoring strategy,”
IEEE Software, 2008.

M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E.
Johnson, “Use, disuse, and misuse of automated refactorings,” in Pro-
ceedings of the 34th International Conference on Software Engineering,
ser. ICSE "12. IEEE Press, Jun. 2012, pp. 233-243.

T. Grossman, P. Dragicevic, and R. Balakrishnan, “Strategies for ac-
celerating on-line learning of hotkeys,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI "07.
New York, NY, USA: Association for Computing Machinery, Apr. 2007,
pp. 1591-1600.

S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “CODIT: Code
editing with Tree-Based neural models,” IEEE Trans. Software Eng.,
vol. 48, no. 4, pp. 1385-1399, Apr. 2022.

