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Abstract—In this paper, we present the Yestercode tool for sup-
porting code changes in visual dataflow programming environ-
ments. In a formative investigation of LabVIEW programmers,
we found that making code changes posed a significant challenge.
To address this issue, we designed Yestercode to enable the
efficient recording, retrieval, and juxtaposition of visual dataflow
code while making code changes. To evaluate Yestercode, we im-
plemented our design as a prototype extension to the LabVIEW
programming environment, and ran a user study involving 14
professional LabVIEW programmers that compared Yestercode-
extended LabVIEW to the standard LabVIEW IDE. Our results
showed that Yestercode users introduced fewer bugs during
tasks, completed tasks in about the same time, and experienced
lower cognitive loads on tasks. Moreover, participants generally
reported that Yestercode was easy to use and that it helped in
making change tasks easier.

I. INTRODUCTION

Visual dataflow programming languages are receiving re-
newed attention for industrial applications. At their core,
these languages represent code using graphical box-and-wire
diagrams, where boxes denote functions and wires denote
the passing of values between functions. Although textual
languages, such as Java and Python, have tended to dominate
mainstream programming, a few visual dataflow languages
have been able to carve out successful niches—for example,
LabVIEW1 has been used in the domain of science and engi-
neering applications for over 30 years. The benefits of visual
dataflow languages have been well documented: easier to
learn [3], [5], improved liveness or immediate feedback [25],
and more informative notations [11], [28]. A recent surge of vi-
sual dataflow languages have aimed to leverage these benefits
for a variety of purposes: Google/RelativeWave’s Form tool
for prototyping phone apps, Filter Forge for producing image
filters, RapidMiner for data analysis, and Microsoft Robotics
Developer Studio for programming robots.

However, despite this success, visual programming envi-
ronments have received little or no tool support for making
code changes. The tediousness and error-proneness of making
code changes, such as refactorings [8], has been well recog-
nized in textual programming environments [13], [17], [18].
Textual programming environments support code changes
in various ways, including autocomplete (e.g., Calcite [16]
and Graphite [21]), automated refactoring (e.g., ReBA [7]

1http://www.ni.com/labview/

and BeneFactor [9]), and code smell detection (e.g., PMD
and DETEX [15]). Although a few researchers have begun
investigating code-change support for visual programming
environments (e.g., SDPA [6]), the work is still in the early
stages, and has yet to see widespread adoption in practice.
In our own formative interviews of LabVIEW programmers
(Section III-A), many confirmed that making code changes
was currently difficult and problematic.

In a formative user study of LabVIEW programmers
engaged in refactoring (Section III-B), we found that the
programmers encountered considerable challenges during
rewiring. In visual dataflow languages, rewiring may in-
volve changing existing wires to connect to different box
input/outputs, or introducing new wires into existing code. The
ability to rewire effectively is of critical importance in visual
dataflow languages, because nearly every code change requires
some manipulation of wires. However, during rewiring activ-
ities, participants consistently forgot what wires represented
and introduced bugs by mixing up wires.

To address these problems with rewiring, we propose Yester-
code, a novel tool concept for visual dataflow programming
environments (Section IV). Two key goals of Yestercode are
to enable programmers to efficiently access past versions of
their code, and to juxtapose a reference copy of an older
version with their current code by viewing them side by side.
Toward achieving these goals, we made several key design
decisions, including transparent automated version logging,
tight code-editor integration (e.g., copy and pasting capability
from reference-copy to code editor), and annotations to aid
comprehension of the differences between the reference copy
and current code.

In this paper, we present an initial prototype of Yestercode
for LabVIEW and report a user-study evaluation using the
prototype (Section V). In particular, our user study involved
14 professional LabVIEW programmers, and addressed the
following research questions:

RQ1: Do programmers using Yestercode introduce fewer
bugs during change tasks?

RQ2: Does using Yestercode affect the time it takes pro-
grammers to complete change tasks (for better or for
worse)?
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Fig. 1. LabVIEW block-diagram editor. Editors have a palette (A), along
with debugging and other controls (B). The pictured editor has open a block
diagram (C) that is under construction, with several broken wires (e.g., D).

RQ3: Do programmers using Yestercode have lower cogni-
tive load during change tasks?

RQ4: Do programmers have favorable opinions of Yester-
code?

II. BACKGROUND: VISUAL DATAFLOW LANGUAGES

In this work, our aim is to address the problem of code
changes in visual dataflow languages. Instead of textual source
code, visual dataflow languages are characterized by programs
being made up of boxes (functions) and wires (values), as
illustrated in Fig. 1-C. The execution of the program follows
the dataflow via the wires. Although visual dataflow languages
have a radically different syntax than textual languages, such
as Java, they still provide many of the same foundational
features, such as modularity.

In this paper, we focus on LabVIEW, a commercial visual
dataflow programming environment that is one of the most
widely used visual programming languages to date [29]. In
LabVIEW, programs are composed of modules, called Virtual
Instruments (VIs). Fig. 1-C illustrates the code for a VI,
represented as a block diagram. This VI has four inputs (box
icons along the left side of the diagram) and one output
(box icon at far right). It performs some conditional logic on
its input (yellow triangle icons), and calls another VI (gray
box; similar to subroutine). This VI is under construction,
and contains several broken wires that have one or more
disconnected ends and are denoted as dashed lines with red
exclamation icons (Fig. 1-D).

III. FORMATIVE INVESTIGATION

A. User Interviews: Modifying Code Is a Problem

As a first step in understanding the barriers that visual
dataflow programmers face, we conducted a series of formative
interviews. In particular, we held 54 semi-structured interviews
with engineers and managers at National Instruments (the
maker of LabVIEW). Each interview lasted between 15 and
30 minutes. Our participants consisted of 36 Application
Engineers (who provide support to LabVIEW customers), 7

Software Engineers, 4 Hardware Engineers, 4 Group Man-
agers, and 3 UX Engineers. We guided the discussion with
questions regarding problems they have with the LabVIEW
IDE, problems customers run into, and potential tool support
to address these problems.

A key trend from the interviews was that participants found
modifying existing LabVIEW code a challenge. Participants
often said that either they or customers will go to great lengths
to avoid modifying existing code. For example, they often
“start from a blank slate” and rewrite code rather than directly
modifying code they had previously written. One manager
even said that, for her team, modifying code was a “million
dollar problem,” because several of her engineers waste effort
each day rewriting similar but different programs, and then
ultimately “throw away the code.”

When we prompted participants about why modifying ex-
isting code was a challenge, their responses provided only
a few insights. Most often, they offered vague answers, like
that it was “just easier” to rewrite code. A few participants
said that it was difficult to remember what specific code does,
and that it was too time consuming and tedious to make
substantial changes. Three engineers cited the general lack of
explicit textual identifiers in visual dataflow code as making
it particularly difficult to recall what wires “mean”.

B. User Study: Rewiring Barriers and Coping Strategies
To better understand why programmers said that it is easier

to rewrite code rather than modify it in LabVIEW, we con-
ducted an exploratory user study of LabVIEW programmers
engaged in change tasks. The study involved 6 participants: 3
graduate students with 1–2.5 years of LabVIEW experience, 1
Hardware Engineer with 4 years of LabVIEW experience, and
2 Software Engineers with 16 years of LabVIEW experience
each. Each participant took part in a 60-minute programming
session in which he/she made improvements to an existing
LabVIEW application that we provided. To get each partic-
ipant started, we gave him/her three change tasks. Once the
participant completed those tasks, we asked him/her to make
additional improvements as he/she saw fit. If the participant
became stuck, we suggested additional change tasks. At the
end of the session, the participant took part in a 30-minute
semi-structured interview in which we played back a video of
his/her task performance, and asked questions about his/her
goals, barriers, and strategies.

A key trend in our user study was that participants exhibited
difficulty rewiring components correctly. Many participants
made comments about how tedious rewiring a portion of code
was. For example, one participant began rewiring, and quickly
exclaimed “This is going to take all day!” Rewiring was so
difficult that all 6 participants accidentally introduced at least
one bug into the program while rewiring. Moreover, 4 of the
6 participants started but then abandoned a code change that
they determined was too difficult.

To cope with the challenges of rewiring code, participants
commonly used one of three code-change strategies. One
strategy was to use the editor’s Undo/Redo commands in



quick succession to quickly look at older versions of the code
being rewired and then return to the current version. Another
strategy was, prior to rewiring, to copy and paste the code
into the same editor window so as to keep the copy visible
as a reference while they rewired the original code. The final
strategy was to take screenshots of the code prior to modifying
it, and then to use the screenshot as a reference while rewiring.
Interestingly, all three of these strategies shared the common
theme of enabling the programmers to refer to older versions
of the code as they performed rewirings.

IV. YESTERCODE TOOL DESIGN

Based on the code-change barriers and coping strategies re-
vealed by our formative investigation, we designed the Yester-
code tool for visual dataflow programming environments. In
particular, Yestercode aims to help with rewiring changes
by enabling the programmer to efficiently refer to a prior
version of the code while making changes. We hypothesize
that by having a readily available reference version of the
code, the programmer will exert less mental effort recalling
the meaning of the wires and other elements, and thus, will
make fewer mistakes resulting from memory failures. Fig. 2
illustrates our Yestercode design (instantiated as an extension
to the LabVIEW IDE). We arrived at this design via an
iterative process of collecting and incorporating feedback from
professional LabVIEW programmers for our evolving design.

As a result of our design process, we identified five key
principles for the design of Yestercode. In particular, our
design should. . .

• Transparently record the version history of a block dia-
gram as the programmer edits it.

• Enable efficient navigation of the version history to
recover reference versions of the code.

• Enable juxtaposition of the current block diagram with
an older reference version of that diagram.

• Provide visual cues in the older reference version of the
block diagram to call out differences with the current
version.

• Provide tight integration between the reference-version
view and the code editor, for example, such that code in
the reference version may be copied and pasted into the
editor.

In the remainder of this section, we highlight the features of
our Yestercode design that satisfy these principles.

A. Transparent Recording of Version History

As a programmer edits a VI in the code editor (Fig. 2-
B, Yestercode automatically records the changes made. To
keep the number changes recorded manageable, Yestercode
does not record those that concern only the code element’s
spatial location (e.g., dragging a node to a different location
onscreen). This automated recording is transparent to the
programmer in that it is completely automatic, requiring no
explicit instructions from the user.
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Fig. 2. Yestercode-extended LabVIEW IDE. The standard LabVIEW IDE
features include a project explorer (A), a VI code editor (B; see also Fig. 1),
and an error-message view (C). Yestercode extends the IDE with an additional
view (D) that enables the user to navigate the current VI’s version history
(E), and that displays the block diagram of the selected older version (F) with
annotations denoting differences with the current version (e.g., G).

Based on our formative user study, the design decision to
record versions transparently was preferable to having the pro-
grammer explicitly initiate the saving of versions. Participants
in the user study often did not realize they wanted an older
version of the code until they were well into making a change
and became stuck. Thus, forcing programmers to explicitly
save older versions would introduce a problem of premature
commitment in which they must make a decision (whether or
not to save a version) before they are able to decide (whether
they will want to refer to that version) [10].

B. Efficient Navigation of Version History

To enable efficient navigation of the recorded versions,
Yestercode provides a history slider (Fig. 2-E). Sliding the
shuttle to the left, steps back in time through the version
history. To assist the programmer in finding the appropriate
version, Yestercode displays the currently selected version just
below the slider (Fig. 2-F). To choose an older version of the
code to use as the reference, the programmer needs simply to
slide the shuttle to the appropriate version, and leave it there.

C. Juxtaposition of Current and Older Versions

To enable the programmer to place an older reference
version of the code side by side with the current version,
Yestercode splits the editor pane to situate a reference-version
view (Fig. 2-D) directly next to the code editor (Fig. 2-B).
This juxtaposition of editor and reference version enables the
programmer to quickly refer back and forth between them, a



behavior common to participants in our formative user study.
For times when the programmer does not need the reference
version, the view can be collapsed and hidden.

D. Visual Cues Denoting Version Differences

To facilitate comparing the features of the reference version
of the code with the version in the editor, Yestercode provides
visual cues in the reference-version view to indicate boxes and
wires that have been removed or updated in the current version
(e.g., Fig. 2-G). In particular, a purple border around a box
or a purple dot on a wire indicates that the box/wire has been
deleted or modified with respect to the current version in the
editor. Although Yestercode provides no explicit cues to call
out elements that have been added in the current version, based
on our experience, it is often the case that existing elements
are changed to incorporate new elements, providing cues that
implicitly call out the additions.

E. Tight Integration with Editor

To provide tight integration with the code editor, the
Yestercode reference-version view is designed to be an editor
extension (in our LabVIEW case, sharing the same graphical
pane as the editor). In our prototype, tight editor integration
offered several benefits. Aside from being read-only, the
appearance of and user interactions with the reference-version
view were identical to those of the code editor. Chief among
these interactions was the ability to copy and paste code from
the reference-version view to the code editor. Additionally,
other editor features were available in the reference-version
view, such as contextual help provided by hovering the mouse
pointer over elements in the block diagram, and selection and
highlighting of elements in the block diagram to aid reading.

V. EVALUATION METHOD

To address our research questions (Section I), we conducted
a laboratory study of LabVIEW programmers engaged in
code-change tasks. The study had two treatments, each for a
different version of the LabVIEW IDE. The control treatment
was associated with use of a standard LabVIEW IDE, and the
Yestercode treatment was associated with use of a Yestercode-
extended LabVIEW IDE. The study had a within-subjects
design in which each participant experienced both treatments.
To account for order effects, we blocked and balanced based
on the treatment orderings.

A. Participants

Our participants consisted of 14 professional LabVIEW
programmers (11 male, 3 female) from a large technology
company. They reported, on average, 4.36 years of program-
ming experience (SD = 1.74) and 1.98 years of LabVIEW
experience (SD = 1.89). All participants programmed in
LabVIEW as part of their daily work.

B. Code Base and Change Tasks
For our study, the participants performed code-change tasks

on a calculator application written in LabVIEW and composed
of 34 VIs. The application was based on a publicly available
sample application2 written in an old version of LabVIEW.
We ported this sample application to the current version of
LabVIEW, and modified it to follow the official LabVIEW
development guidelines [20]. The code was fully functional
and did not contain any known bugs.

Each participant performed six code-change tasks on the
calculator application. Each task was based on one of Fowler’s
refactorings [8]. The tasks were divided into two sequences of
three (one sequence for each treatment). For each three-task
sequence, the first task required an Inline Method refactoring,
the second required an Extract Method refactoring, and the
third required an Introduce Parameter Object refactoring. In
our LabVIEW context, the Inline Method tasks (IM1 and IM2)
each involved replacing a call to a VI with the contents the VI
itself; the Extract Method tasks (EM1 and EM2) each involved
pulling out part of a VI and making the part its own VI;
and the Introduce Parameter Object tasks (IPO1 and IPO2)
each involved replacing a set of multiple wires coming out
of a block with a single wire that bundles the output values
together.

C. Procedure
Each participant took part in an individual session that

lasted approximately 1 hour. All participants began the session
by filling out a background questionnaire and receiving an
introduction to the calculator-application code. Next, each
participant completed a first 3-task sequence with one treat-
ment and a second 3-task sequence with the other treatment.
Seven randomly selected participants used the control IDE
first, and the other seven used the Yestercode-extended IDE
first. Each 3-task sequence began with an introduction to the
IDE that the participant would be using for that sequence.
Next, the participant performed the 3-task sequence in order,
completing each task before beginning the next. We asked each
participant to “think aloud” as he/she worked. Once the par-
ticipant had finished each task, he/she completed a cognitive-
load questionnaire (details below). At the end of the session,
all participants completed an opinion questionnaire regarding
Yestercode, and took part in a semi-structured interview in
which they discussed any issues that they had while working.

D. Data Collection
The data collected for the study comprised screen-capture

video and audio of the participants as well as their question-
naire responses. For the cognitive load questionnaire, we used
a well-validated instrument based on Cognitive Load The-
ory [22]. The instrument features a 7-point Likert question that
measures a person’s overall cognitive load during a task. Prior
work showed that the instrument does not interfere with task
performance, is sensitive to small differences in workload, and

2http://www.ni.com/example/30779/en/
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Fig. 3. Yestercode users introduced significantly fewer bugs than control users
(smaller bars are better). Whiskers denote standard error.

is reliable [23]. Moreover, the instrument has been shown to
highly correlate with more-complex self-reporting instruments
(e.g., NASA TLX) [30] as well as with physiological sensors
(e.g., heart rate) [23].

VI. RESULTS

All 14 of our LabVIEW programmers completed all six
code-change tasks. Thus, for each task, seven participants
completed the task using the control IDE and seven using the
Yestercode-extended IDE.

A. RQ1 Results: Bugs Introduced
As Fig. 3 shows, participants using the Yestercode-extended

IDE introduced considerably fewer bugs than those using the
control IDE. In fact, Yestercode users did not introduce any
bugs, except for one task (IM2). In contrast, control users
introduced bugs during every task, but one (EM1). Indeed, the
results of a Mann–Whitney U test revealed that Yestercode
users introduced significantly fewer bugs than control users
(U = 31.5, Z = 2.3, p < 0.05).

B. RQ2 Results: Time on Task
As Fig. 4 shows, Yestercode users completed tasks in similar

amounts of time to that of control users. The task time differed
by less than 10% for three of the tasks between the treatments.
However, control users took 92% longer than Yestercode users
on IM2, which was also the task with the highest rate of bugs.
Averaging across all tasks, the time taken to complete the tasks
did not differ significantly between the control and Yestercode
treatments.

C. RQ3 Results: Cognitive Load
As Fig. 5 shows, Yestercode users reported considerably

lower cognitive loads than control users. In fact, Yestercode
users reported a lower cognitive load than control users for
every task, on average. For the task that participants introduced
the most bugs, IM2, control users reported a cognitive load
that was 7 times higher than Yestercode users, on average.
The results of a Mann–Whitney U test showed that Yestercode
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Fig. 4. Overall, control and Yestercode users did not exhibit a significant
difference in time taken to complete tasks. Whiskers denote standard error.
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Fig. 5. Yestercode users reported significantly lower cognitive load than
control users (smaller bars are better). Whiskers denote standard error.

users reported a significantly lower cognitive load than control
users (U = 34.5, Z = 2.7, p < 0.01).

D. RQ4 Results: Opinions of the Participants
To assess participants’ opinions of Yestercode, each par-

ticipant responded to the following questions at the end
of the session (7-point Likert scale; “this tool” referred to
Yestercode):

• How difficult or easy was this tool to use?
• How helpful was this tool?
• The tasks with this tool were more difficult or easier?
As Fig. 6 shows, participants reported highly positive opin-

ions of Yestercode on the opinion questionnaire. None of the
14 participants responded negatively to any question, and only
two participants gave neutral responses (one regarding ease of
use and the other regarding whether Yestercode made the tasks
easier). Moreover, all participants reported finding Yestercode
helpful to some degree.

VII. DISCUSSION

Overall, the quantitative results of our Yestercode evaluation
were highly favorable. Yestercode significantly reduced users
perceived cognitive load (Section VI-C). Moreover, Yestercode
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users took roughly the same amount of time on tasks as
control users (Section VI-B), but introduced significantly fewer
bugs in their solutions (Section VI-A). Finally, the participants
generally scored Yestercode highly on the opinion question-
naire, with no one giving a negative score on any question
(Section VI-D).

A. Qualitative Observations

To delve deeper into our results, we analyzed our data for
qualitative evidence that helps explain our outcomes.

1) When participants got stuck, they turned to Yestercode:
Yestercode often helped participants when they got stuck
by saving them from having to back out of their changes
by undoing. For example, while working on Task IPO1, P4
deleted a group of wires that he was going to rewire. However,
having done so, he realized that he no longer knew what they
were supposed to be wired to. That is when he turned to
Yestercode:

P4: “Oh! I have history! So I deleted all the wires inside the
True Case. So instead of Ctrl-Zing, I am going to look at
the history.”

Similarly, P9 discussed the importance of having Yestercode
to help when getting stuck:

P9: “That is the hardest thing when you’re refactoring. You
delete a bunch of stuff, then you’re, like, where did all of
it go?”

Other participants echoed P4’s sentiment that Yestercode was
preferable to using Undo to get back lost information:

P3: “With the history [Yestercode], it was great because I could
just click through and I didn’t even have to do all those
undos.”

P6: “When I had the history feature, I never had to undo
anything.”

2) Yestercode reduced effort and tedium: One possible
reason that participants expressed preferring Yestercode to
using Undo was that Undo was tedious and labor intensive
by comparison. For example, when P12 got stuck while using
the control IDE, he first looked for a feature like Yestercode.
He could not remember where a particular wire went, so he
asked the researcher running the session if the control IDE
had any capabilities similar to those of Yestercode. After being

instructed it did not, he resorted to tediously performing over
15 undo actions to see where the wire originally went. He then
clicked Redo another 15 times until he returned to his latest
version.

Other participants also complained of having to perform
time-consuming and tedious activities in the control IDE to
access and manage older versions of the code. For example,
P8 expressed his frustration about having to undo his changes:

P8: “No, I don’t want to go back to the way it was. I just
want to see the way it was! I don’t want to undo all of my
changes just to see it.”

Similarly, P10 and P13 described their tedious processes of
switching between tabs to see code so that they could perform
code changes:

P10: “This was harder to do because I didn’t have the history
tool [Yestercode]. I had to go back and forth a lot.”

P13: “I usually use copy paste when I’m making a change or
I’ll flip back and forth between two different tabs if I’m
moving code.”

P2 also expressed preferring the juxtaposition that Yestercode
enabled over switching between tabs:

P2: “I think the way it is built, it is over here. It isn’t intrusive.
You can make it smaller. It is very accessible. It isn’t like
I have to open up another tab.”

To avoid switching between tabs and performing many
undo/redo actions, some users of the control IDE took screen-
shots of the code to use as a reference:

P9: “I use the screenshot tool in Windows to do that for me, so
I will take a snapshot, then I will move the window over
and edit while I look at it.”

P12: “For that first task without history [Yestercode], I had to
do a lot of undo and redo just to check. For the next task,
I took a screenshot instead.”

However, as P7 pointed out, having Yestercode’s reference-
version view reduced much of the window management that
would need to be performed to juxtapose a screenshot:

P7: “With the history [Yestercode], I don’t even have to move
anything around. I can just see where it goes. . . It was way
easier with this [Yestercode].”

3) Participants leveraged Yestercode for verification: One
possible reason that Yestercode users produced significantly
fewer bugs in their task outcomes was that a number of them
used Yestercode to verify their code changes, often at the end
of their tasks. One such verification episode was especially
fruitful for P10. She believed that she had completed the task
but wanted to verify it:

P10: “I could look at this to make sure they’re all wired
correctly. This is where this comes in handy, for sure.”

By performing this verification, she found that several of her
wires were incorrect. She then deleted all of the wires, and
quickly redid them one by one, checking Yestercode before
each change. Similarly, several other participants commented
on the utility of Yestercode for verifying correctness:

P12: “This is a good use of the history [Yestercode] where I
can go back and make sure something didn’t get discon-
nected. Did all of these wires go to the right place?”



P2: “Even when you don’t mess up, it is good for validation.”

This tendency to use Yestercode for verification may explain
why Yestercode users had similar task times as users of the
control IDE. Because Yestercode made it convenient to verify
changes, the Yestercode users spent additional time doing
so, and also caught more bugs in the process. A similar
phenomenon was observed by Burg et al. for their tool,
Timelapse [4]: participants used the tool repeatedly, which was
viewed as beneficial, yet their task time stayed the same as
participants without the tool.

It remains an open question, however, whether Yestercode
users had fewer bugs in their task outcomes mainly because of
this verification behavior or mainly because they created fewer
bugs to begin with. For example, although using Yestercode
for verification may have helped some users spot bugs, such
use did not guarantee success. There was one instance where
a Yestercode participant introduced a bug that went unnoticed,
even after using Yestercode to verify his change. In particular,
P3 introduced a bug during Task IM2. After performing a
code change, he spent nearly a minute reviewing his code
using Yestercode. However, he failed to notice that he had
accidentally swapped two wires. In sum, although verifying
code changes with Yestercode could not catch all bugs, it
demonstrably enabled participants to catch some, contribut-
ing (at least in part) to the Yestercode users’ lower bug-
introduction rate.

4) Participants missed Yestercode when it was gone:
Participants often expressed wishing that they had Yestercode
on tasks for which they were assigned the control IDE. For
example, while using the control IDE, P2 became confused
while performing a rewiring during Task IPO2:

P2: “This is going to be a mess.”

As a result, he undid all his work and laboriously repeated it.
Later, when he was introduced to the features of Yestercode,
he lamented the time he could have saved earlier if he had
had the tool:

P2: “In the last one [task], I was deleting wires and couldn’t
remember what they were. I had to undo everything.”

Other participants also made comments on how helpful Yester-
code would have been on tasks they were made to perform
with the control IDE:

P7: “This [Yestercode] would have been helpful on the first
tasks.”

P5: “On the first three tasks, I was completely deleting every-
thing and it would have been nice to just look to my right
[at Yestercode].”

P8: “This one [later task] was more difficult, because I didn’t
have the history window [Yestercode]. On the other one
[earlier task], I knew I could just go back and rely on that.
With this one, I had to plan everything, or else I would get
jammed.”

P13: “This [Yestercode] would have been helpful on the previ-
ous exercises to see where the wires were and where they
go.”

B. Related Work

In prior work, programmers have needed access to older
versions of code for a variety of reasons. Researchers have
studied programmers in the contexts of backtracking to a
previous version of code [31], aborting a refactoring [26], and
exploring the design space or variations of a program [14],
[24]. Our motivation differs from that of these works in
that our purpose in storing and retrieving older versions is
to provide the programmer with a reference while making
changes to the code.

The two most prevalent technologies for storing and re-
trieving older versions of code are version control systems and
undo features. Version control systems (VCSs) are widely used
in professional software development for managing versions
of source code and facilitating collaborative development. For
example, Git is one such VCS that has been growing in
popularity, with one website reporting that there are 266,781
public Git repositories3. However, most VCSs require users to
explicitly perform commit actions when they want to save a
revision of their code. As mentioned in Section IV, in our con-
text of code-change support, this user interaction introduces a
premature commitment issue [10]: the programmer must know
ahead of time which versions he/she will need later, and thus,
which to versions to save using their VCS.

Using undo features are also common for backtracking to a
previous version of code. This invaluable feature is common
in many applications and allows a user to change his/her code
file by a single step in a linear fashion [2]. A longitudinal
study found that programmers backtracked more than 10
times per hour using undo features or manually changing the
code [31]. Even our formative user study participants would
often use undo to get back to a previous reference version
of their code. However, in doing so, they would temporarily
give up their current version of the code in order to view a
previous version, and they ran the risk of losing their current
version permanently if they accidentally made a change after
performing undo. Researchers have proposed a number of
approaches to address this problem, including ones based
on a tree-based history (e.g., [27]) and selective undo (e.g.,
GINA [1], Amulet [19], and Azurite [32]); however, none of
these approaches were specifically designed to address the
issue of providing a reference version to compare with the
current version.

Beyond getting back to a previous version of code, program-
mers often want to compare two versions side-by-side. The
UNIX diff utility is the seminal tool for comparing two text
files. Its features have been incorporated into mainstream code
editors, such as Eclipse and Visual Studio, to allow the com-
parison of two versions of code, often with text highlighting to
indicate inserted or deleted text. Furthermore, researchers have
applied diff to programming concepts other than text, such as
LSdiff, which identifies systematic code changes by analyzing
code elements and their structural dependencies [12]. Indeed,

3https://www.openhub.net/repositories/compare



Yestercode’s annotations for denoting differences between the
reference block diagram and current one were inspired by diff.

More recently, researchers have combined undo support
with a comparison view. Azurite is an Eclipse plug-in for
textual-code editors that allows a programmer to selectively
undo a region of code to a previous state, and provides a
comparison feature that shows a before and after version of
the relevant code [32]. Additionally, Azurite transparently logs
the code edits and shows a timeline visualization. While this
tool fully supports programmers trying to backtrack, it may
not effectively support a programmer who is attempting to
perform a new change while referencing a previous version.
For example, unlike Yestercode, the comparison view is in an
interface separate from the code editor, and as a consequence,
the programmer cannot make edits to the current version while
juxtaposing it with the older version.

C. Limitations

Our user study has several limitations inherent to laboratory
studies of programmers. First, our sample of visual dataflow
programmers and the tasks in our study may not represent
all such programmers; however, we recruited professionals
from a large tech company to increase the likelihood that
they are representative of other professional programmers.
Second, the code base was small, but we based it on an open
source project in an effort to make it more representative of
actual projects. Third, the tasks, although based on common
refactorings from the literature, were relatively short, and may
not be representative of more complex tasks. Fourth, reactivity
effects (e.g., participants consciously or unconsciously trying
to please the researchers) may have occurred; however, we
tried to minimize them by presenting the two versions of
LabVIEW as possible design alternatives for a new release,
and did not disclose that the Yestercode version was our
invention. Finally, order effects of the tool and tasks may
have affected our observations, but we counterbalanced the
tool order to control for this effect with respect to our statistical
tests.

VIII. CONCLUSION

In this paper, we introduced the novel Yestercode tool to
support rewiring code changes in visual dataflow languages.
Our formative investigation revealed that visual dataflow
programmers had substantial problems rewiring code during
change tasks (Section III). Following an iterative design
process, we designed the tool around five key principles
(Section IV), and implemented a prototype of it as an extension
to the LabVIEW IDE. An evaluation study comparing our
Yestercode prototype with a standard LabVIEW IDE made
the following key findings:

• RQ1 (bugs): Programmers using Yestercode introduced
significantly fewer bugs during change tasks.

• RQ2 (time): Yestercode had no noticeable effect on task
time.

• RQ3 (cognitive load): Programmers using Yestercode
experienced significantly lower cognitive load during
change tasks.

• RQ4 (user opinions): Programmers generally found
Yestercode easy to use and helpful in making change
tasks easier.

We hope that Yestercode marks a substantial step toward
comprehensive support for change tasks in visual dataflow
languages. In the future, Yestercode could be extended in a
variety of ways to further improve the support that it provides,
such as more-intelligently grouping small edits or providing a
visualization-enhanced version timeline. More-radical changes
could include enabling the branching of code versions and
the editing of different versions in parallel. Additionally, our
studies have revealed other areas ripe for investigation, for
example, how to support programmers in the comparison
of runtime behavior between versions of code in order to
assist them in understanding how their changes impact the
program’s behavior. These ideas have considerable potential
to dramatically improve the productivity as well as enjoyment
of visual dataflow programmers—like Yestercode was able to
do for our Participant P5:

P5: “Neat! I don’t have to undo, I can just use my history
feature.”
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