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Abstract—Data scientists spend significant time on data
wrangling—a process involving data cleaning, shaping, and pre-
processing. Data wrangling requires meticulous exploration and
backtracking to assess data quality by applying and validating
numerous data transformation chains, making it a tedious and
error-prone process. In this paper, we present Detangler, an
interactive tool within the RStudio IDE that helps data scientists
identify and debug data quality issues and wrangling code. The
design of Detangler is informed via formative interviews, and it
presents data scientists with (i) insights into potential data quality
issues, and (ii) always-on visual summaries of the effects of
individual data transformations, enabling interactive exploration
of data and wrangling code. Through a laboratory study with
18 data scientists, triangulated with telemetry data, we find that
Detangler improves exploration and debugging of data smells and
data wrangling code. We discuss design implications for future
tools for data science programming.

Index Terms—data science, data wrangling, programming

I. INTRODUCTION

The general workflow of a data science project involves data
discovery, collection, ingestion, cleaning and pre-processing,
exploratory data analysis, and data modelling [1]. The advent
of big data and data-driven systems make data wrangling
an increasingly necessary and demanding task, as real-world
data is riddled with varying data quality issues (missing
values, inconsistent formatting, duplicate values, and so on).
Data wrangling is a time-consuming, tedious, and error-
prone process, requiring validation, debugging, and continuous
iterations over data transformation chains [2, 3, 4, 5]. For data
modelling tasks, data scientists must also iterate on their feature
selection, architecture, and hyperparameters [6].

Data scientists commonly use the fluent interface pro-
gramming pattern [7, 8], which involves composing multiple
operations into a chain. Each operator in the chain accepts data
resulting from the previous operation, performs a transformation
or computation on this data, and passes the result to the
next stage of the chain. This pattern is supported using the
tidyverse1 package’s pipe (%>%) operator in R. However,
isolating problems in a broken chain is cumbersome and riddled
with errors — requiring manual inspection of intermediate
results. This is exacerbated when data already comes with issues
such as missing values and outliers, that affect data analysis
downstream. Another key characteristic of data wrangling code

1https://www.tidyverse.org/
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Fig. 1: Detangler can be invoked from the code editor (A)
to validate transformations and detect data smells. Users can
explore intermediate results using the code overlay (B). Data
Details and Table views display potential data quality issues
and always-on visuals for the selected transformation step (C).

is that it involves “exploratory” programming [9], producing
messy code that can introduce data-related issues that go
unnoticed until an analysis is performed. To deal with these
issues in data wrangling pipelines, data scientists are forced
to perform (i) line-by-line code isolation to validate individual
transformation steps, (ii) manual inspection of datasets, and
(iii) data quality checks by writing additional code.

Our preliminary research informs us that data scientists
heavily rely on manual data inspections to identify data quality
issues. Few data scientists leverage data exploration libraries,
such as skimr for R and pandas-profiling for Python, that
provide descriptive statistics and summaries based on the data.
However, data analysts may not always be aware of potential
data smells and quality issues, such as the presence of miscoded

https://www.tidyverse.org/


NAs (such as ‘-’ in place of NaN), typing-errors in categorical
columns, outliers, and unexpected values, which lead to errors
downstream. Further, to use such tools, data scientists have to
go out of their way to understand and learn framework specific
end-points to write relevant data quality checks.

Towards addressing these shortcomings, we designed
Detangler—an in-situ tool for the RStudio IDE for data
scientists to explore, understand, and debug data wrangling
code and data smells. Detangler presents ‘Data Details’ and
‘Table’ views (as seen in Figure 1) that enable data scien-
tists to step through their wrangling pipelines and discover
important characteristics about their data through (i) alerts for
potential data quality issues, (ii) always-on visualizations, and
(iii) visual representations of data modifications. With these
features, Detangler aims to reduce manual efforts involved in
discovering data smells and validating code behaviour. Through
a usability evaluation of these design features, we find that
Detangler supports data scientists in both, exploration, as well
as debugging of data quality issues and mistakes in the code.
The contributions of this paper are the following:

1) Findings from a formative study with 8 data scientists—
surfacing pain-points in data wrangling workflows, and
design considerations for data science tools.

2) The design of an in-situ interactive tool, called Detan-
gler, that provides data scientists the agency to perform
data quality checks and structured explorations of data
wrangling code at each transformation step.

3) Findings from a laboratory study with 18 data scientists,
demonstrating that Detangler reduces data scientists’ data
wrangling efforts by reporting potential data smells and
validating the effects of data transformation pipelines.

II. RELATED WORK

A. Tools to manage wrangling code and output versions

Researchers have developed tools that help data scientists
write and modify code. Kery and Myers [9] found that
data science programming is characterized by exploratory
programming, which can lead to disorganized and ephemeral
code. Tools like Gather [10] help find, clean, recover, and
compare versions of code in cluttered, inconsistent computa-
tional notebooks like Jupyter. To explore alternative code in
notebooks, Fork It [11] uses a technique to fork a notebook and
directly navigate through decision points in a single notebook.
To help data scientists automate writing data wrangling code,
Wrex [12] uses programming-by-example. Similarly, Mage [13]
helps users generate code based on the modifications of their
dataframes. We build on the promising design of Unravel, a
tool that facilitates the understanding of fluent code through
structural edits [14]. In addition to performing exploratory
tasks with the fluent programming pattern, Detangler aims to
help data scientists identify potential data quality issues and
validate transformation chains.

B. Exploring and understanding data science programs

Prior work has explored some tools to help data scientists
understand code. For example, TweakIt is a system designed

to help end-user programmers collect, understand, and tweak
Python code in a spreadsheet [15]. There are also tools that help
data scientists visualize how common data wrangling operations
work. The Datamations tool animates dataframe wrangling
and visualization pipelines in R. Datamations automatically
processes fluent code in R using tidyverse packages and
provides a paired explanation and visualization of each step
in the chain [16]. Detangler is designed as an interactive tool
used within RStudio IDE to allow opportunistic learning and
debugging of data wrangling code with the use of always-
on visuals [17, 18]. There are also web-based tools like
Tidy Data Tutor that visualizes functions in R to help data
scientists understand how those functions transform data [19].
Another tool, DS.js, provides end-users with a data science
environment within web-pages, enabling them to interactively
explore structured data [20]. pipediff [21] is an RStudio
plugin that highlights the differences between two adjacent
steps in a data transformation pipeline within the IDE. However,
fewer tools are available for data inspection and debugging.

C. Debugging data wrangling code and data smells

More recently, there has been some focus on data quality
issues and tooling to fix them. Diff In The Loop (DITL), em-
phasizes the idea of displaying data and distribution differences
for versions of data wrangling code [22] during exploratory
analysis work. Our work is most closely aligned with DITL with
regards to problem motivation and some aspects of the design.
While DITL uses the idea of code snapshot differences, we
focus on transformation differences in a data wrangling pipeline
for one version of the code at a time. The DITL prototype
also shows various descriptive statistics and visualizations like
histograms and their differences between these code snapshots,
which can be useful for debugging transformations. Another
web-based tool, Rill Developer [23], automates data quality
checks for SQL by stripping away the need to perform the
manual checks and visualizing issues like missing values.

III. FORMATIVE INTERVIEWS AND DESIGN GOALS

To better understand the common pain points of exploring
data wrangling code and the types of data quality issues that are
commonly dealt with, we conducted semi-structured interviews
with 13 data scientists. We recruited 8 data scientists (F1–F8)
who frequently use the RStudio IDE to wrangle data in R.
The discussions focused on how they perform data wrangling,
how data wrangling fits within their IDE workflow, what tools
they use (or have used) for checking data quality issues, and
what difficulties they face as they wrangle data. These insights
guided the design goals for Detangler.

1) Manual inspection of data for quality issues: All of the
data scientists made heavy use of features within RStudio
that help them explore data. F4, F5, and F8 talked about
how they typically start by previewing the first or last few
rows of the data and the column or variable types. However,
this is typically insufficient since console outputs in IDEs like
RStudio “may not reveal potential issues with data like missing
values” (F4). Similarly, F1, F2, and F3 talked about how they



also have difficulty “catching subtle issues” (F1) like specific
values that one has to normally write code to filter out. When
exploring data for the first time, all data scientists described
common checks that they perform manually by writing code
such as checking for variable types (e.g. string versus a number),
missing values (NAs), and miscoded [24] NA values (e.g. -99,
“-”, etc.), outliers, unexpected values, distribution of variables,
and descriptive statistics (e.g. ranges).

Several participants mentioned using built-in functions in
R such as is.na or packages like skimr which provides
a static printout of the column types, and their descriptive
statistics. F3, F4, and F5 described using skimr to summarize
checks and descriptive statistics into a text output, but this
still didn’t allow “interactive introspection into each of these
characteristics” (F3). F1, F4, F5, and F6 found histograms of
variable distributions to be a quick, easy and reliable way to
understand the characteristics of the dataset as a whole. These
insights motivate our first design consideration:

D1: Data wrangling tools should enable insight finding
and detection of data smells, outliers, and unexpected
values without requiring manual inspection of the dataset.

2) Validating changes made to data for individual transfor-
mations: Data wrangling code typically consists of moderately
long transformation pipelines. Data scientists reported trouble
in isolating individual transformation steps to understand
and validate changes that they have made to the data. For
exploration of data wrangling code and output, data scientists
expressed that current tools make it difficult to navigate the
many steps in a transformation pipeline, and understanding
how the code and output corresponds with each other. Data
scientists expressed that a significant portion of their time is
spent on isolating and validating each transformation on the
data. This leads us to the following design considerations:

D2: Data wrangling tools should make it easy to preview
and validate the output of individual transformations to
avoid line-by-line code isolation.
D3: Data wrangling tools should help data scientists find
mistakes in their code and include automated descriptive
statistics and checks for data transformations.

3) Frequent context switches within the IDE hinder data
scientists’ workflow: The process of debugging wrangling
code is made difficult due to the absence of interactive ways to
explore datatables. A few data scientists (F2, F4, F8) expressed
that while they do make use of interactive tables in RStudio
using the View function, it can be hard to manage multiple
ad-hoc tables in the IDE. This leads to multiple views and
tools used for exploratory checks that can take a data scientist
out of context from their data wrangling code. This insight
motivates the following design goal:

D4: Data wrangling tools must make it easy to navigate to
interactive data views and transformation step summaries
in a consolidated view to reduce context switching.

IV. DETANGLER: TOOL DESIGN AND IMPLEMENTATION

In this section, we present the implementation details and
system design for Detangler with two innovative features

to support data scientists wrangling workflow: the ‘Table’
and ‘Data Details’ views. Detangler’s design is focused on
facilitating wrangling transformations—aiding exploration and
debugging of data smells and fluent code. Downstream analysis
tasks such as visualizations and training are out of scope
for Detangler. Detangler is a web-based tool that can be run
within the RStudio IDE to explore, understand, and debug data
wrangling code in R. We decided to prototype this tool for R
as it is widely adopted and used for data science programming
tasks, and is a popular language in general2. Detangler works
with any transformation chains applied to dataframes (not
specific to tidyverse, though it is popular). We discuss the
design decisions to support design goals for Detangler, informed
by the formative interviews in Section III.

1) Invoking Detangler to explore data wrangling code:
Fluent interfaces are popularly leveraged by data analysts to
apply chained transformations while maintaining the legibility
of their code. To support data wrangling code exploration in
this mode, Detangler can be invoked by piping code to the
detangle() API as the final step in the transformation chain:
coffee_ratings %>%
select(country_of_origin, total_cup_points) %>%
mutate(country=fct_lump(country_of_origin, 12)) %>%
detangle()

Alternatively, Detangler can be invoked by highlighting the
pipeline one wishes to detangle, and selecting ‘Detangle’ from
the Addins drop-down menu, as seen in Figure 2. Detangler
then opens up in the RStudio Viewer Pane3, presenting users
with an interactive ‘Code Overlay’ for exploring pipeline
stages. To provide high-level insights into intermediate results
in the transformation pipeline, the overlay displays dataframe
dimensions corresponding to each step, and visual cues for
their execution. Detangler uses a color schema to indicate the
nature of a change, as seen in Figure 1. Grey indicates ‘No
change’, blue indicates an ‘Internal change’, yellow indicates a
‘Visible change’ to the dataframe, and red indicates an ‘Error’ in
executing the transformation pipeline stage. To further support
D4, each of the views present information using in-line always-
on visualizations within RStudio’s Viewer Pane.

We support interactive exploration of fluent data wrangling
code by updating the Table and Data Details views with
intermediate data information corresponding to the currently
focused line of code in the overlay. Data scientists can thus
select the data transformation steps they wish to analyse,
avoiding the overhead of line-by-line code isolation for analysis
(supporting D2).

2) Data Details: To support the design considerations (D1–
D4), we implemented an the ‘Data Details’ view (Figure 3). In
our formative interviews, several informants expressed the need
for quick summary statistics for dataframe variables. Along
with automating the summary of variable characteristics, data
scientists also desired reducing the manual writing effort to
perform data quality checks (detailed in Section III). The
Data Details view supports these requirements, and displays

2TIOBE Index rankings for R: https://www.tiobe.com/tiobe-index/r/
3https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html

https://www.tiobe.com/tiobe-index/r/
https://rstudio.github.io/rstudio-extensions/rstudio_viewer.html


Fig. 2: To invoke Detangler, users can highlight the pipeline
they wish to detangle and select ‘Detangle’ from the RStudio
Addins drop-down menu.

Fig. 3: A user can examine expanded details about a dataframe
column, displaying type-specific statistics, such as count table
(A), and potential issues (B) for the type such as miscoded
NAs like “-” for categorical columns.

descriptive statistics and visuals for the intermediate data
depending on the transformation step selected in the overlay.
The view displays the (i) type, (ii) number of unique elements,
(iii) number of missing elements, (iv) the distribution plot, and
(v) alerts for potential problems for the selected column.

We were inspired by existing tools like skimr [25] that
print descriptive statistics of variables in a dataframe, and use
existing built-in R functions like summary for numeric variables
(Figure 4), and functions like count from the dplyr package
for counting values in categorical variables. Each column
displays additional details describing type-specific (numerical
versus categorical) statistics, and the potential issues data
scientists may have to fix before modelling their data (Figure 3).

3) Table view: To further support the design considera-
tions (D1–D4), we designed the Table view to supplement
the Data Details view, by adding cues on modified columns,
grouped dataframes, column types, and search by value. We
added type information for each column of the table, like <int>
for integer or <chr> for character, mimicking the console
output for dataframes when using the tidyverse R pack-
ages. Participants of our formative interviews expressed how
grouping data according to certain variables and performing
aggregate computations—such as finding the average for each
group—is a common pattern in data wrangling. To support
this, the color change schema “Internal change” highlights

Fig. 4: Visualizing numeric data with the Data Details view.
Detangler provides descriptive statistics and potential issues
for each column. No change Internal change Visible change Error
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Table Data Details

Search

1 Ethiopia 90.58 Ethiopia

2 Ethiopia 89.92 Ethiopia

3 Guatemala 89.75 Guatemala

4 Ethiopia 89 Ethiopia

5 Ethiopia 88.83 Ethiopia

1 2 3 4 5 ... 268 Next1–5 of 1339 rows Previous

coffee_ratings %>%

    select(country_of_origin, total_cup_points) %>%

    mutate(country = fct_lump(country_of_origin, 12)) %>%

    mutate(country = fct_reorder(country, total_cup_point

country_of_origin
<chr>

↕ total_cup_points
<dbl>

↕ country
<fct>

↕

Fig. 5: The Table view supplements the Data Details view,
by adding cues for modified columns, grouped dataframes,
column types, and search by value. Here, the country column
is highlighted in yellow to indicate a visible change for the
selected transformation step.

columns as blue when users are grouping variables, as opposed
to “Visible change” where actual modifications are made to
the dataframe. Detangler’s Table view displays the dataframes
whenever a group_by operation is performed.

Data scientists in our formative study found it easy to miss
erroneous values that don’t meet their expectations, such as
placeholder values and miscoded NAs (Section III). To facilitate
identification of such problematic values, we added search bars
for the Table and Data Details views, enabling them to locate
specific values (matched via pattern matching).

V. LABORATORY STUDY

We conducted a usability study over video conference with
18 data scientists to understand how Detangler can assist them
in identifying data smells, understanding and debugging data
wrangling code for data analysis, and assessing if Detangler
fits optimally in their data wrangling workflow.

A. Participants

We recruited participants through an online advertisement
of the study on Twitter where data scientists are increasingly
active [26]. To be eligible for the study, participants had to self-
report their experience with data wrangling, R programming,
and their field of work. Out of 123 sign-up survey responses,
we recruited 18 data scientists (10 males, 8 females) via
random sampling, who had varying levels of experience in data
wrangling and programming in R. On a 5-point Likert scale,
participants self-reported their experience in data wrangling (µ



= 3) and R (µ = 3.1), with a minimum of 1 and maximum of 5.
The recruited participants belonged to varying fields, including
software, psychology, and education. We used the average self-
ratings of participants’ data wrangling and R skills to bucket
participants into either of the two categories: beginner data
scientists (2–3.5) and experienced data scientists (above 3.5).

B. Protocol

The study was conducted remotely, over a video conferencing
tool, where participants shared their screens for the session’s
duration. For the programming environment, we used RStudio
Cloud IDE, a web-based version of the RStudio IDE. Being
a browser-based IDE, participants were able to use Detangler
on their computers within their own choice of browsers and
configurations. Each session lasted 60 minutes, and consisted
of a demo session and three debugging tasks.

1) Debugging Tasks: For the three debugging tasks, the
participants were tasked with exploring analysis scripts written
in tidyverse R using the dplyr and tidyr packages with the
goal of fixing the data wrangling code to produce the desired
visualization. The three datasets were based on #TidyTuesday
datasets [26], which included data quality issues inherently,
and we further modified them to include common data smells
discussed in prior work [27], and common issues mentioned by
participants (F1–F8) in our formative interviews. No participant
indicated familiarity with the selected datasets.

Each task script was scaffolded with code to import the
dataset, wrangle the data, and visualize it to explore relation-
ships between variables. Participants were tasked with thinking
aloud while exploring, understanding, and debugging the data
wrangling code using Detangler. We did not prevent participants
from writing their own code, in an attempt to investigate at
which stage(s) participants would reach for Detangler during
their data wrangling workflow. We designed the following 3
tasks including inherent issues with the data as well as varying
mistakes in the data wrangling code:

(Task A) Coffee Ratings: Participants examined a script that
visualizes total coffee ratings for countries around the world
using a box plot. The provided data wrangling code involved
filtering out missing values (NAs) or miscoded values like
white space or 999. The missing values are not handled in data
wrangling code which produces an incorrect plot containing
box plots for total cup points by top 12 countries. The inclusion
of miscoded NAs makes this process harder because they are
no longer detected with explicit checks for NAs.

(Task B) Chopped: Participants examined a script visualiz-
ing the average episode ratings for all seasons of the Chopped
TV Show. The provided data wrangling code included an
incorrect order of summary statistics about particular groups of
variables before grouping the data by those variables. Grouped
calculations is common yet it can be confusing because it
collapses large tables into a smaller ones by aggregating values
according to groups. The data also contained a problematic
value (-99) that fell outside of the range of expected values
for a rating (0–100).

(Task C) Crop Yields: Participants examined a script that
analyzed the global crop yields for major countries like USA,
Brazil, China, and Russia. The data wrangling code reshaped
the dataframe from a wide form (many columns) to a long
form (many rows). However, the existing code contains two
errors: incorrect column name being used with pivot_longer
and incorrect data type—year column was converted from a
numeric type to a character (string).

C. Data Collection and Analysis

All participant sessions were recorded and transcribed. We
made field notes during the sessions to record observations
about which features were used by participants, and in what
ways, to facilitate exploration and understanding of the data
wrangling tasks. We then performed inductive qualitative coding
to analyze initial patterns and draw connections to derive
axial themes that describe our participants’ interactions with
Detangler. We followed the guidelines set by Carlson [28]
and performed a single-event member check with our results
to overcome theoretical sensitivity. Following the completion
of the usability session, we administered an exit survey to
measure the usefulness of Detangler and its specific features.

To triangulate our findings, we also analyzed the log events
for patterns that help explain our themes. We instrumented De-
tangler and RStudio to log all successful user code executions,
Detangler invocations (by clicking lines in the code editor),
counts of “focusing” on the views (via mouse hover event),
and Detangler-specific feature usage.

VI. RESULTS

In this section, we present themes and log analysis results
from the user study, describing the behaviors observed, strate-
gies used, and feedback from participants. The results of our
user study suggest that Detangler addresses the design goals
we formulated in Section III. Participants found that Detangler
helped them explore data wrangling code as a consolidated
view when they felt confused about transformations (D2,
D4). Detangler enabled participants in further understanding,
and more importantly, in catching issues with both—the
data wrangling code and the data (D1, D3). Detangler made
exploration of data wrangling code and output easier as “it
offers a lot of information in a very compact way.” (P14)
Several features of Detangler helped participants interactively
explore the code behavior and the dataframe transformations.

We observe that Detangler was used in bursts whenever
participants were trying to understand code behavior or
the resulting dataframe from the wrangling. Beginners and
experienced participants did not differ much on their frequency
of using Detangler or executing code in RStudio. Beginners
detangled code 124 times and executed code 268 times in
RStudio; while experienced participants detangled code 127
times and executed code 294 times.

A. User-Survey Results

Overall, data scientists’ response to Detangler was positive.
On a 5-point Likert scale (Table I), participants positively rated



the usefulness of Detangler overall (µ = 4.5, median = 5).
Participants rated all features positively: the Data Details view
to catch potential data quality issues (µ = 4.7, median = 5)
and understanding transformations (µ = 4.4, median = 5), and
the always-on visualization showing dataframe shape (µ = 4.5,
median = 5). Participants found code highlighting to invoke
Detangler (µ = 4.2, median = 4) for viewing intermediate
results helpful (µ = 4.6, median = 5).

B. Detangler provides quick validation of data characteristics

With a consolidated view presenting users with always-on
visualizations, Detangler gives data scientists the agency to (i)
form mental models of variable distributions, (ii) quickly and
reliably validate the effect of individual transformations, and
(iii) visually identify data smells and quality issues. Detangler
successfully mitigates the need to perform manual inspections
of data and saves the previously spent effort in writing code
to perform data quality checks (supporting D1–D4).

1) Detangler’s consolidated experience is inviting for data
scientists: We observed a mix of beginners and experienced
participants making use of RStudio features while examining
data, such as the Environment Pane (P5, P7), the interactive
table using the View() function (P5, P6, P9, P10, P18) that
holds all variables such as the dataset variables, and the
interactive console (P4, P5, P10). When participants were using
these other views, they eventually decided to use Detangler
when they felt the need to view both, the code and the output
in the same window, supporting D4. Participants then made
use of the always-on visualizations within Detangler (described
in Section IV) to help them validate transformation pipelines.

2) Detangler facilitates isolation of transformations to
validate assumptions about code behaviour: P13 favored
the Detangler’s Table view when checking dataframe outputs
because of the ease of exploring them in the tool: “I’m a very
slow coder, I change things and come back and mess things up
each time. [In Detangler], I can see that I’m messing up if my
dataset has a strange shape and not go over to the console. I
check the console output but it’s not as easy to understand as
what happened [on the console].” Experienced participants like
P5, P13, and P14 liked the fact that each line comes with its
own output as well as Data Details, a clear difference from the
traditional approach of writing a single expression pipeline and
only seeing the final result: “What’s cool is that what happens
below [on the table] depends where you are on the [code line]
so it’s for each line. Usually I only look at beginning data and
final output.” (P5)

3) At-a-glance visualizations help data scientists form in-
stincts: Participants used the Data Details view to get an
overall sense of the columns and quickly catch issues. The
unique number of elements and ‘missingness’ insights in the
Data Details view helped participants quickly identify and
validate issues corresponding to each transformation. P14 used
the unique counts for the season column while trying to
check how the counts dropped in Task B and was able to spot
the missing values in episode ratings that dropped 2 seasons.
Participants used the in-line histograms to spot extreme values.
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For example, P10, P12, and P13 looked at the histogram of the
total_cup_points column in Task A and saw that it was
heavily left skewed. They examined the expanded details for
the column and noticed there was a 0 as a minimum value,
and they were able to filter out that value. P14 was able to
spot the incorrect ordering of the group_by after summarize
by taking a peek at the histogram for the season column,
and said, “Yeah so that should definitely be more than 14 and
should be more of a uniform distribution.”

C. Using Detangler to debug data wrangling mistakes and
data quality issues

Detangler helped participants identify and debug data quality
issues and code mistakes (supporting D1 and D3).

1) Data scientists organically switch between the views:
Beginners made heavier use of the Table view (488), while
still consulting the Data Details (300). Experienced participants
equally split their time between both views, 436 in Table
view and 422 in Data Details view (see Figure 6). Several
beginners (P1, P2, P7, P9, P11) used the Table view and
clicked through the ‘Next’/‘Previous’ buttons to flip through
the rows to validate assumptions for a particular column. For
example, P11 flipped through some rows in the Table view
when they were investigating the ‘-99’ outlier in Task B and
once that became laborious, they switched to the Data Details
view which pointed out the value. Although hesitant at first,
experienced participants like P4, P5, P8, P12 went directly
to the Data Details view for every task to save on time after
having success with it initially, instead of performing manual
checks with the Table view.

2) Participants triangulate potential issues using multiple
views: Participants used multiple views to understand potential
issues, toggling between (i) transformation steps using the code
overlay, (ii) the Data Details view for descriptive statistics and
potential issues with attributes, and (iii) the Table view to look
for values corresponding to those issues (e.g. by searching for
specific values in the Table view). For example, P1 searched
for the miscoded NA value of “-” in Task A for the country
column in its expanded details within Data Details. Similarly,
P2 made use of the search feature in Task C to validate whether
the crop column contained values with an “_” in the name
(cocoa_beans). P16 also made heavy use of the search feature



TABLE I: Post-Study Survey Responses

Likert Resp. Counts1

% Agree SD D N A SA Distribution2

50% 50%0%

Data Details view helped identify potential issues with data. 94% 0 0 1 4 13
Clicking lines to view intermediate data was useful. 94% 0 0 1 5 12
Data Details view helped describe transformations. 89% 0 2 0 5 11
The dataframe shape information helped validate changes. 89% 0 1 1 4 12
Detangler was useful overall. 89% 0 0 2 5 11
Invoking Detangler through code highlight and Add-in was useful. 83% 0 0 3 9 6

1 Likert responses: Strongly Disagree (SD), Disagree (D), Neutral (N), Agree (A), Strongly Agree (SA).
2 Net stacked distribution removes the Neutral option and shows the skew between positive (more useful) and negative (less useful) responses.

Strongly Disagree, Disagree, Agree; Strongly Agree.

to validate removing the “-” in the country column in Task
A. When things still didn’t make sense, participants explored
other lines in the code overlay, their corresponding code, and
the Table and Data Details views. For example, P14 saw how
the unique counts for the season column in the last step was
43 instead of the original 45. Confused, they checked the line
before the filter step and saw the missing values in episode
ratings from the missing bar which dropped 2 seasons in the
step before. Through these features of Detangler, participants
were able piece together and triangulate information from each
of these views: “you can check multiple things to make sure
you haven’t totally broken your code” (P15).

D. Exploring and understanding data wrangling code

Detangler was able to achieve D1 by providing several ways
to explore and understand unfamiliar code. We observe that
data scientists frequently toggle transformations (remove and
re-add transformation steps) and re-order transformations to
form an understanding of the functions applied to the data.
Data scientists also expressed the need to refer to function
documentation to understand how the data is being modified,
which we further discuss in Section VII.

Using Detangler helps validate assumptions about a func-
tion’s behaviour: We observe that validating one’s under-
standing of code behavior sometimes requires more than
reading the documentation for functions, or accessing error
logs from its execution. Since participants had varying levels
of experience with R, understanding code frequently required
interactions with Detangler. While function documentation was
useful in situations where participants were confused about
unfamiliar functions, it did not help beginners such as P9 or P11
understand how data wrangling operations compose together
in relation to the task of creating a visualization. P9 and P11
would often invoke Detangler by clicking on particular lines,
and examine the intermediate dataframes at those steps using
the code overlay to validate their assumptions about how the
function behaves. They were able to make guesses based on
how the output changed after making a change like reordering
lines (P9). In other instances, both P1 and P2 who were quite
inexperienced with R were able to guess how filter works
based on the name and validating their assumption by flipping
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Fig. 7: Number of times participants clicked on transformation
steps from the code overlay to view intermediate results.

through the rows of the dataframe in the Table view. We discuss
key limitations in supporting novices in Section VII.

E. Detangler aids beginners and experts

Participants generally made heavy use of clicking on lines
to invoke Detangler, and focus on particular transformation
steps to validate their understanding of the code. While all
participants made use of this core invocation and exploration
feature of Detangler, we observe that beginners clicked on
lines more than experts. This finding was corroborated by the
logs as well. Figure 7 visualizes the total lines clicked, and
shows that beginners clicked 341 times, whereas experienced
participants clicked 282 times. One trend that aligned with this
result is that participants who clicked through the intermediate
lines of data wrangling code generally completed more tasks
besides two exceptions: P11 who was able to complete 2 tasks
despite the low number of clicks, and P6 who was having
difficulty learning tidyverse R style for the first time as a
heavy base R user. These log results demonstrate that Detangler
successfully supports design goals D1 and D3.

VII. DISCUSSION AND FUTURE WORK

Detangler’s design can be adapted to any fluent code domain.
Fluent expressions are used by other popular programming
languages, such as LINQ for C# and the pandas and PySpark
libraries for Python. We discuss the implications of our findings,



future work on improving the interactive exploration of data
wrangling code, and identify how Detangler could be adapted
to various programming languages and contexts.

A. Better Support for Novice Data Scientists
Although Detangler helped in some ways, it did not provide

adequate support participants to complete all tasks. The function
documentation was a key requirement in helping several
participants understand a function’s purpose. Clicking on lines
allowed participants to be able to focus on the particular
line’s code and output. However, as one participant put it,

“[Detangler] was helpful in that I did not have to run every line
to view the intermediate data, but I still have difficulty in how
to write data wrangling operations and visualizing them.” (P9)
While the scaffolded code in our tasks did help novices learn
data wrangling in R by examining the example code through
Detangler, there was a lack of support in helping them write
data wrangling code, and be able to understand why certain
operations are needed for the goal of producing a visualization.

We also observe that beginners refer to function documenta-
tion more frequently as compared to experienced data scientists.
Through insights from think-aloud sessions, we gather that
some functions, like c, drop_na, na_if and rename are
intuitive. However, the functions fct_lump and fct_reorder
are confusing as “their function names don’t clearly convey its
purpose.” These functions, provided by the forcats package,
operate on categorical variables (called factors) in R. Similarly,
filter was sometimes confused by participants (P9, P7, P11,
P10) to mean filtering out rows that meet a criteria, whereas
it meant selecting rows. Similarly, when clicking on the line
using the pivot_longer on Task C, P2 was happy to have
referenced the documentation: “Oh values_to! It will be very
helpful to have a link to the documentation here.”

B. Live Programming for Data Wrangling
As discussed in Section VI, we found that generally

Detangler was able to fit into the workflow of data scientists
in RStudio with some pain points. Participants in our study
found it useful to be able to highlight data wrangling code
and detangle it through the Addins and explore within the
IDE. However, all participants desired more liveliness once
they explored existing code and wanted to make modifications.
For example, P10 said “if I could somehow edit code [in
Detangler] that would be cool. Then you can see it updating
in real time and you don’t have to go back.” P2 expressed how

“having to highlight everything is a little bit weird. It would be
really nice if you could do it in the same vein as execute line
on editor, it would be a lot more intuitive.” These comments
make sense given the current limitations of Detangler. We can
take inspiration from tools like Glinda [29] which implement
live programming using a domain-specific language for data
science programming, or DITL [22], which supports saving
snapshots of successful data wrangling code.

C. Exploring and Highlighting Data Quality Issues
Participants leveraged the Data Details view to identify data

quality issues, but found a few limitations in the process.

1) Nudging users to validate data issues: During the study,
we noted that there was no mechanism to draw attention to
check insights available in the Data Details view. For example,
P1 who was a beginner said that “if there were any problems
I would like there to be some kind of highlight here like a
nudge to click on Data Details.” Experienced participants like
P4 kept forgetting to check Data Details and similarly, P10
said “I think getting used to the fact that each operation has
its own data details. Not sure why I kept forgetting, but that’s
very useful actually.’’ In other words, while Data Details was
useful, it lacked a mechanism to draw attention.

2) Providing flexible tools to audit problems: Our visualiza-
tions lacked the ability to provide details-on-demand, meaning
participants could identify problems but could not easily locate
them. P5, “One thing that would be super neat to include is
what the points in the distribution correspond to” which is a
limitation of the in-lined histograms for each column that others
point out as well (P1, P3). For the in-line distribution, P5 and
P10 wanted to customize the type of plot to display for the in-
line distribution such as a density plot. They also mentioned that
showing duplicates of the data would be beneficial but warned
that “it’s not easy to handle because it could be duplicates of
various columns not just whole row.”, which can be addressed
in our future work.

3) Streamlining data quality checks: Many participants (P1,
P2, P3, P4, P5, P8, P18) spent time exploring columns that
are irrelevant to the task, and yet attracted their attention due
to the missing values bar, or potential problems numbers. The
always-on visualization and statistics for the columns of a
dataframe could become noisy. To mitigate this, P1 desired

“being able to dismiss warnings like dismissing warnings in the
IDE.” However, assigning severity to issues and fixing them
might always remain a human-in-the-loop effort. The authors
of dataMaid expressed that automation of cleaning means “all
power is given to the the computer with no human supervision,
and investigators are less likely to make an active, case-specific
choice regarding the handling of the potential errors” [30].

VIII. CONCLUSION

We built Detangler, a tool that enables structured exploration
of data wrangling code and data quality checks using Data
Details and Table views. Data scientists must continuously
assess and improve data quality by applying and validating
chains of transformations—making data wrangling tedious
and error-prone. Through formative interviews, we identified
challenges with uncovering data quality issues and the manual
effort in validating changes, required throughout the data
wrangling workflow. In a user study with 18 data scientists, we
found that Detangler provides quick and reliable validation of
data characteristics using always-on visualizations. Detangler’s
features help data scientists in (i) identifying potential data
smells, (ii) triangulating insights and validating assumptions
about data wrangling code, and (iii) effectively debugging
wrangling mistakes. Through this work, we aim to be one step
closer towards helping data scientists detangle their code.
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