
Challenges in Using Conversational AI for Data Science
Bhavya Chopra

University of California

Berkeley, CA, USA

bhavyachopra@berkeley.edu

Ananya Singha

Microsoft

Bangalore, India

ananyasingha@microsoft.com

Anna Fariha

University of Utah

Salt Lake City, UT, USA

afariha@cs.utah.edu

Sumit Gulwani

Microsoft

Redmond, WA, USA

sumitg@microsoft.com

Chris Parnin

Microsoft

Raleigh, NC, USA

chrisparnin@microsoft.com

Ashish Tiwari

Microsoft

Redmond, WA, USA

astiwar@microsoft.com

Austin Z. Henley

Carnegie Mellon University

Pittsburgh, PA, USA

azhenley@cmu.edu

Abstract
Large Language Models (LLMs) are transforming data science, of-

fering assistance in coding, preprocessing, analysis, and decision-

making. However, data scientists face significant challenges when

interacting with LLM-powered agents and implementing their sug-

gestions effectively. To explore these challenges, we conducted a

mixed-methods study comprising contextual observations, semi-

structured interviews (n=14), and a survey (n=114). Our findings

reveal key obstacles, including difficulties in retrieving contextual

data, crafting prompts for complex tasks, adapting generated code

to local environments, and refining prompts iteratively. Based on

these insights, we propose actionable design recommendations,

such as data brushing for improved context selection and inquisi-

tive feedback loops to enhance communication with conversational

AI assistants in data science workflows.

CCS Concepts
• Human-centered computing→ HCI theory, concepts and
models; Empirical studies in HCI; • Software and its engi-
neering → Requirements analysis.

Keywords
data science, computational notebooks, large language models

ACM Reference Format:
Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin,

Ashish Tiwari, and Austin Z. Henley. 2025. Challenges in Using Conversa-

tional AI for Data Science. InWorkshop onHuman-In-the-Loop Data Analytics
(HILDA’ 25), June 22–27, 2025, Berlin, Germany. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3736733.3736748

1 Introduction
Data scientists have traditionally relied on resources like documen-

tation, tutorials, online courses, colleagues, Q&A forums, and online

communities to develop skills and solve tasks [28, 29, 37, 38]. Such

resources have been instrumental in helping them navigate the

challenges of data acquisition, cleaning, wrangling, visualization,

and presentation, especially for those with a non-programming

background [10, 26]. Although useful, it can be time-consuming,

tedious, and error-prone to rely on these resources for solving a

data-science problem.

With the emergence of AI-powered chat assistants, data scien-

tists now have access to potentially faster and more accessible

resources through a chat interface. These AI-powered chatbots, like

ChatGPT
1
, enable users to ask questions in natural language, and

get useful responses with little to no latency. For example, when

prompted with “split my date column that is in MM/DD/YYYY

format into three columns”, ChatGPT provided usable Python code:

df[['Month', 'Day', 'Year']] = df['Date'].str.split('/', expand=True)

ChatGPT can also explain how the code works, and supports

follow-up questions or changes. Evaluations of these AI tools have

demonstrated over 80% accuracy on comprehensive benchmarks

like MMLU—which assesses a model’s knowledge across 57 diverse

subjects including STEM, humanities, and law [21], and for pro-

gramming benchmarks like HumanEval and MBPP [5, 11].

However, the effectiveness of these tools is dependent on data sci-

entists successfully communicating their questions, context (overall

problem, task at hand, datasets, etc.), assumptions, and domain

knowledge to the AI assistant, through a back-and-forth conver-

sation. Grice’s maxims of conversation posit that a successful con-

versation involves content that has right amount of information,

that is truthful and supported by evidence, that is relevant to the

specific context, and that is presented clearly [17, 36]. But conver-

sations go awry—either side of the conversation may be making

false assumptions, there may be ambiguities, and conversations

may require numerous clarifications.

The barriers to express intents are exacerbated in the context

of data-science tasks. First, data scientists work with a variety of

artifacts, including raw datasets, code, computational notebooks,

visualizations, documentation, and machine-learning pipelines. Sec-

ond, datasets are often large and normalized (spilt across multiple

tables), which may not be feasible to share (e.g., due to token lim-

its of AI tools or due to data being spread across heterogeneous

sources) or to summarize the relevant portions succinctly (e.g.,

specifying regions of the data). Third, real-world data is messy, and

suffers from quality issues; they may not strictly adhere to a schema

or homogeneous format. Fourth, data-science tasks often require

domain expertise and numerous assumptions (e.g., negative values

in a column represent an error, 0 means missing value) and it may

be laborious to ensure that the AI assistant is aware of such domain

knowledge and assumptions.

In this work, we aim to understand the fundamental challenges

encountered by a [human] data scientist in communicating to a

conversational AI agent. In particular, we address the following

research questions:

1
https://chat.openai.com/

1

https://doi.org/10.1145/3736733.3736748
https://chat.openai.com/


HILDA’ 25, June 22–27, 2025, Berlin, Germany Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z. Henley

• RQ1: How do data scientists interact with ChatGPT to complete

data-science tasks?

• RQ2: What challenges and unmet needs do data scientists face

when interacting with ChatGPT?

• RQ3: How well do these challenges and needs generalize to the

broader community of data scientists?

To answer these questions, we conducted two mixed-method

need-finding studies. In the first study, we observed 14 data scien-

tists as they completed four diverse tasks with ChatGPT’s assistance

(Sections 3, 4). The second study surveyed 114 data scientists to

validate and generalize these findings (Section 5).

This paper makes the following contributions:

• An observational study of how data scientists engage with Chat-

GPT to solve common data science (DS) tasks.

• A survey study to validate and generalize the findings of the

observational study with a broader sample.

• Design recommendations to improve data science tools, including

providing data context preemptively, providing inquisitive feed-

back loops, providing support for code validation & structuring,

and providing transparency about shared context & assumptions.

2 Background and Related Work
This section discusses the recent surge of AI-powered chat assis-

tants and how they are changing data science.

Large Language Models and AI-powered chat assistants. AI-powered
chat assistants are built on top of large language models (LLMs).

LLMs are generative machine-learning models with billions of pa-

rameters, and are trained on a vast amount of data (text and images)

to generate human-like responses and perform various language

tasks. These models, based on the transformer architecture [39],

interact with users through a prompt, a natural-language query to

which the LLM can provide a natural language response. There are

restrictions on the token limit, or the amount of information that

can be sent or generated from the LLM. Tools like ChatGPT add

a user interface to enable a conversation, such that the model has

context of the conversation history.

Tools for AI-assisted data science. AI-assisted tools for data cleaning
suggestions—such as Trifacta

2
[4, 20, 25], Data Wrangler

3
, CoWran-

gler [12], AWS Glue DataBrew
4
, Salesforce Einstein Discovery

5
,

AutoPandas [7], Auto-Suggest [40]—have existed, and LLMs bring

forth new opportunities for further enhancing these tools. More

recently, several commercial and open-source tools leveraging con-

versational LLMs have emerged—DataChat AI [3, 24], Anaconda

Assistant [1], Databricks Assistant [2],

There has been a recent line of work that tries to make use of

LLMs to automate data-science tasks and evaluate performance of

LLMs on data-science tasks [23, 27, 33, 42]. This is a promising, but

orthogonal, area of research to ours as we focus on human-in-the-

loop data science where AI-assistants and human data scientists

work as a team. Recent works from Gu et al. also focus on the spe-

cific aspects of planning assistance from LLMs [18] and response

2
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation

3
https://devblogs.microsoft.com/python/data-wrangler-release/

4
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation

5
https://help.salesforce.com/s/articleView?id=sf.bi_edd_prep_terminology.htm

verification approaches data scientists engage in [19]. Our work is

differentiated by (1) examining the fundamental interactions with

a generic AI-assistant (ChatGPT), rather than a domain-specific AI

tool embedded in a system, (2) studying professional data scientists

rather than non-programmers, and (3) Liu et al. specifically inves-

tigated the effect of co-editing a prompt by splitting it into natural

language steps.

3 Study 1: Methodology
First, we conducted task-based semi-structured interviews and ob-

served 14 professional data scientists engaged in data-science tasks.

We used ChatGPT
6
, a browser-based conversational AI-assistant to

supplement the use of computational notebooks and the rich ecosys-

tem of data science tools. Powered by the GPT-3.5 series, ChatGPT

belongs to the InstructGPT family and allows collaborative con-

versations, as opposed to providing completions. Our selection of

ChatGPT as the conversational assistant for the study is motivated

by its accessibility and large-scale use for Python programming

[14], alongside its competence in generating Python code [31, 34].

Participants. We recruited participants from a large technology

company through random sampling of employees with the job

title “Data Scientist”. We further screened participants based on

having experience with data science, Python, computational note-

books, and ChatGPT. Participants reported a median of 5 years of

experience in the domain of data science (𝜇 = 5.4, 𝑠𝑑 = 2.8).

Tasks. We selected four tasks performed by data scientists in the

lifetime of a typical project [32]—(T1 and T2) data wrangling and

pre-processing tasks, (T3) feature extraction and selection, and

(T4) data visualization for insight-finding and reporting. These are

based on 730 computational notebooks randomly sampled from the

KGTorrent dataset [35], where 4.2%, 5.7%, and 10.8% of 2511 data

transformations are tasks T1, T2, and T3 respectively. Further 40.1%

notebooks contain at least one visualization (T4). We also note that

T1 and T2 are transactional, one-shot tasks; whereas T3 and T4

are driven by exploration and human-intuition, making them more

subjective and time-consuming. We use a sample of the New York
EMS emergency calls dataset [13].

Study protocol. We conducted a one-hour long, task-based study

with each of the 14 data scientists. Participants were presented

with 4 tasks, one at a time, to be solved using Python in any com-

putational notebook of their choice. Alongside having access to

ChatGPT, they were encouraged to use any preferred tools and

resources (such as web search, notebooks, Excel, integrated AI-

assistants like GitHub Copilot, and so on), and think aloud while

solving the tasks. The completion of any task was not a necessity.

Once the participants had explored a task sufficiently, they were

asked semi-structured questions to assess if ChatGPT helped them

solve the task satisfactorily, and if it could have helped them with

the task any better.

Analysis. We transcribed session recordings, annotated prompts,

ChatGPT responses, and participant activities, and conducted the-

matic analysis resulting in 18 open-codes and 6 themes with an

6
https://chat.openai.com/ (Versions: March 14, 2023; March 23, 2023)

2

https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation
https://devblogs.microsoft.com/python/data-wrangler-release/
https://docs.trifacta.com/display/SS/Overview+of+Predictive+Transformation
https://help.salesforce.com/s/articleView?id=sf.bi_edd_prep_terminology.htm
https://chat.openai.com/


Challenges in Using Conversational AI for Data Science HILDA’ 25, June 22–27, 2025, Berlin, Germany

inter-rater agreement of 0.872. Saturation occurred after 9 partici-

pants, and a subsequent member-check survey confirmed partici-

pants’ agreement with our findings.

4 Study 1: Observations on Using ChatGPT for
Data Science Tasks

We provide a summary of our participants’ interactions with Chat-

GPT and then report observed obstacles and strategies used by the

participants. Table 2 summarizes the themes that emerged from

our analysis of the data scientists’ actions and responses. We also

report participants who identified with each obstacle and the cor-

responding prompting strategies they employed in Table 2.

Prompting behaviors. In total, we logged 111 prompts made by 14

participants. Table 1 presents an overview of the prompt distri-

bution for each study task. We observed that participants spent

64% time on preparing prompts, 27% time on adapting the code

returned by ChatGPT, and the remaining on validating the code. In

raw time spent on these activities, on average, 302 seconds were

spent on prompt writing, 57 seconds on adaptation and 24 seconds

on validation. We also find that 37% of the total time was spent on

writing the initial prompt, whereas making refinements to prompts

and asking follow-up questions takes 28% of the total time.

Participants also made iterative refinements to their prompts.

They sent across many follow-up prompts for performing feature

selection (T3)—re-emphasizing task goals, decomposing tasks, pro-

viding additional context and examples, and requesting for tweaks

to code snippets. The need to send follow-up prompts was also ex-

acerbated for plotting visualizations (T4), where participants would

go back-and-forth with ChatGPT for minor tweaks—changes in

plot size, color scheme, and font size.

Table 1: Overview of the number of prompts queried per task, and
average time spent in prompt-writing.

Task # prompts avg prompts avg time (s)

T1–Datetime typecast 22 1.57 55

T2–Split using delimiter 19 1.36 59

T3–Feature selection 47 3.35 159

T4–Heatmap plotting 23 2.3 58

4.1 Communication Obstacles with ChatGPT
Participants faced difficulties in sharing data context, uncovering

and recovering from underlying assumptions made by ChatGPT,

and from misaligned expectations about the response format.

Sharing context is difficult. Since LLMs “cannot make sense of the
raw data” (P2, P3, P7, P8, P10, P12), data scientists begin the process

of prompt-writing by brainstorming what pieces of data, (such as

specific rows matching a criteria, sample values with data qual-

ity issues, column names based on feature importance, etc.) and

which descriptive information (such as pattern of strings in a col-

umn, number of unique values, missing values, outlier information,

minimum/maximum for numeric data, etc.) will lead to satisfac-

tory responses. Participants reported that starting with curating

a prompt is a “daunting” task (P9) because it requires decision-

making on what data context needs to be included. P2 said, “ I doubt

if this will be successful, I feel like we need a little bit more of numbers,
but let’s see if only using the column names we can get something.”

Next, to construct the prompt, participants had to frequently

write code snippets in their notebooks to gather the required con-

text. For instance, consider a pandas DataFrame named df. Partici-
pants must write, execute, and copy the output of commands such

as (1) df.head() to obtain a sample of rows and the data header,

(2) df.columns or df.dtypes to obtain column names and their

data types, (3) df['INCIDENT_DATETIME'][0] to obtain the first

value in the column to provide as few-shot examples, etc.

Some participants implemented custom logic to extract informa-

tion while P5, P7 and P8 had to leave their notebook environment

to open the CSV file in Excel. This was because the participants

wanted to share values from a column, and the raw output from

df.head() could not be selected freely to be copied to the clip-

board. Opening the file in Excel enabled them to select any range

of cells and copy them with ease without writing additional code.

ChatGPT opaquely makes assumptions. Based on the context shared,
ChatGPT made its own “mental model” of the data. Participants

were often enthusiastic about the semantic capabilities of ChatGPT,

and how it could infer domain knowledge about the data solely us-

ing the column names. P4 leveraged these capabilities and prompted

ChatGPT to provide a data dictionary. Several participants (P5, P7,

P10, P12—P14) were amazed when ChatGPT could understand the

data domain sufficiently to convert the extracted ‘RESPONSE_TIME’
column from timedelta format to seconds—which was the most

appropriate unit of measurement, since emergency medical services

are likely to be dispatched quickly. However, despite the semantic

abilities of the LLM, participants struggled and had to re-assess

ChatGPT’s understanding of the task and the data.

As part of T2 (split using delimiter) few rows in the parent col-

umn did not contain the zipcode, leading it to be a mix of two het-

erogeneous formats: (1) “<borough>; <area_code>; <zipcode>”
(“Brooklyn; K7; 11211”), and (2) “<borough>; <area_code>”
(“Manhattan; M3”). Participants typically did not discover this data-

formatting inconsistency by themselves, since encountering such

issues requires exploratory data analysis and on-ramping. As a

result, ChatGPT often did not get visibility into the data quality

issue through participant prompts (P1, P2, P5, P11), and generated

non-executable code under the assumption of having clean and

consistent data:

>>> df['Borough'] = df['DESC'].str.split(';').str[0]
>>> df['Precinct'] = df['DESC'].str.split(';').str[1]
>>> df['ZipCode'] = df['DESC'].str.split(';').str[2]
IndexError: list index out of range

In T3 (feature selection) and T4 (heatmap plotting), ChatGPT

often made assumptions about the data characteristics and type

of columns solely based on the column names. Participants found

ChatGPT to be overly reliant on using column names to make a

semi-informed guess about the data type. This led to run-time er-

rors in T3 while trying to train a model (P5, P12), and visualizations

that were not meaningful for any insight-finding in T4, such as

scatter-plots for categorical and boolean variables (P2, P3, P10).

Missing specification leads to misaligned expectations. Participant
prompts often lack several specifications, that lead LLM responses

3



HILDA’ 25, June 22–27, 2025, Berlin, Germany Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z. Henley

Table 2: Themes—obstacles and strategies when using ChatGPT for data-science tasks.

Theme Description Representative Examples Participants

Obstacles when Communicating with ChatGPT

Sharing context is difficult
(Section 4.1)

Gathering relevant information to

prompt with (e.g., column names,

datatypes, example datapoints)

takes time.

“So this one is recommending scikit-learn which is not a pack-

age I typically use. I usually work in pyspark.”
“It is all about the context which we provide. If we could refine it,

it would do better.”

P1—P6, P8, P10,

P12, P14

(10 of 14)

ChatGPT opaquely makes
assumptions
(Section 4.1)

Data scientists had to correct or ad-

just prompts in response to unantic-

ipated assumptions made by Chat-

GPT about data.

“I will provide this example for the format”

“Oh, it thinks the call type is int, let me say that it is categorical”

P1—P14

(14 of 14)

Missing specifications lead
to misaligned expectations
(Section 4.1)

Missing specifications in user

prompts lead ChatGPT to return

generic or incorrect responses.

“I was expecting it to give me code or make a plan”

“it didn’t bring up to_datetime() and suggested strptime() in-

stead!”

P1—P10, P12—

P14

(13 of 14)

Obstacles in Leveraging ChatGPT’s Responses

Repetitive code edits
(Section 4.2)

Edits of similar nature are made to

adapt & validate code

“We already have pandas and the data, I’ll delete these lines [...]

not required”

“I need a temp df to see the new columns”

“ChatGPT’s affirmative language is deceiving [...]”

P1—P10, P12—

P14

(13 of 14)

Strategies for Prompting and Alternate Resources

Techniques for prompt
construction
(Section 4.3.1)

Data scientists use prompting tech-

niques and attempt scaffolding

ChatGPT with domain expertise

“I can be more specific and give it only the float columns”

“I will paste column names later, so that I can write the prompt

first”

P1—P10, P12, P14

(11 of 14)

Re-using code
(Section 4.3.2)

Re-use of previously authored code

for new data

“automated way to run the pipeline for incoming data”

“copy paste old code [...] 80% of it would be repeating”

P3, P5—P7, P11

(5 of 14)

to be highly temperamental to the phrasing of prompts. The pres-

ence or absence of specific words in the prompt can lead to unan-

ticipated responses from ChatGPT. For instance, for objective tasks

(T1 and T2), not mentioning “pandas” or “dataframe” in the initial

prompt to ChatGPT led to code generations with APIs belonging

to standard python libraries, instead of pandas APIs (P1, P3, P12).
P12 reflected on the issue and realized that they “didn’t talk about
pandas, that’s why it didn’t bring up to_datetime() over here and

suggested strptime() instead!” This helps us understand how

participants form a mental model of the nature of responses they

would get from ChatGPT.

We observe that this problem manifests in different ways for

T3 (a long-form task) and T4 (an exploratory task), where partici-

pants also have more conversation turns with ChatGPT (Table 1).

Most participants struggled to obtain satisfactory responses for T3

(feature selection), owing to several reasons:

First, participants expected ChatGPT to formulate an actionable

plan for feature selection. However, ChatGPT frequently responded

with a “generic block of text” (P10) on why feature selection is im-

portant, and 3–4 ways to perform it. These responses were not

contextualized to the dataset at hand, bringing the onus of adding

specification to prompts through planning and performing task-

decomposition onto data scientists again. Second, we observe a

mismatch in expected and actual response formats. Participants

often expected the LLM to generate code that analyzes relations

between the columns, or assesses the importance of each feature

(e.g., by training a model and using feature weights). But ChatGPT

rarely moved past NL responses, unless provided with specifica-

tions for code generation. Third, participants often mentioned that

ChatGPT cannot be completely trusted as it lacks domain exper-

tise (P1–P5, P7, P8, P11). ChatGPT’s responses are rarely aligned

with participants’ domain knowledge, as it misses necessary data

pre-processing steps, or provides technically incorrect responses.

In one case, while prompting ChatGPT to train a model for predict-

ing ‘RESPONSE_TIME’, P5 noticed it skipped standardization. P5

highlighted its importance: “One thing it has missed is standardizing
data, which is important for checking outliers and understanding
the distribution.” Lastly, T4 (heatmap plotting) saw frequent back-

and-forth prompts as participants tweaked visual details like size,

colors, and label fonts. They also expected ChatGPT to suggest plot

options to quickly explore the most insightful visuals.

4.2 Obstacles in Leveraging ChatGPT Responses
We now discuss challenges faced in using LLM generated code—

where participants had to edit the generated code in certain repeti-

tive ways to successfully adapt it to their notebooks.

Generation of repeated code. A common adaptation the partici-

pants had to make to the generated code was removing lines that

were already present in their notebook. This included (1) repeated li-

brary import statements—especially import pandas as pd , (2) re-

peated data ingestion using the pandas.read_csv() API—where

accidentally executing this code sometimes led the participants’

4



Challenges in Using Conversational AI for Data Science HILDA’ 25, June 22–27, 2025, Berlin, Germany

dataframes to be over-written, causing them to re-run all note-

book cells from the beginning, and (3) performing exploratory data

analysis using APIs like pandas.DataFrame.describe()

Mismatch in data and notebook management preferences. Par-
ticipants preferred standard notebook practices—imports at the

top, modular cells for viewing intermediate results, and interleaved

markdown comments. ChatGPT often generated large code blocks

combining imports and multiple transformations. Participants (P2,

P3, P5, P7, P8, P14) split these into smaller cells and moved imports

to the top to better trace errors.

Data scientists have also been studied to commonly author ex-

ploratory code; or use the fluent programming pattern, composing

multiple transformations into a chain [9, 15]. Several code gen-

erations contained functions for data transformation tasks, with

excessive number of parameters and intermediate steps, contrary

to the typical exploratory and fluent patterns. P3 and P7 refactored

such code generations to obtain chains of transformations.

Lacking support for code validation. Participants emphasized on

the importance of thoroughly validating every operation performed

using LLM-generated code. P7 mentioned that validation is even

more essential as “ChatGPT’s confirmatory and affirmative language
in responses—like ‘Definitely! Here’s the code you need’—is extremely
deceiving because it doesn’t really know about my data.” Though code
validation took the least amount of time when compared to other

activities (prompt construction and code adaptation), participants

verified the functioning of generated code snippets in different

ways. In some cases, ChatGPT self-generated the code snippet(s)

required to validate the data transformation. In other cases, the

participants wrote additional code snippets, or manually inspected

the data to validate changes.

4.3 Strategies to Overcome Obstacles
We now discuss strategies employed by data scientists to overcome

communication and code-adaptation obstacles.

4.3.1 Techniques for prompt construction. We observed frequent

use of one-shot and few-shot prompting for T1 (datetime typecast)

and T2 (split using delimiter) (P1–P4, P6, P8, P10, P12, P14); and

chain of thought prompting for T3 (feature selection).

Participants often noted that LLMs lack “any actual understand-
ing of the data” (see Section 4.1). To address this, some data scien-

tists, like P10 and P14, used domain expertise to iteratively refine

prompts. For example, P14 excluded columns with ‘TIME’ or ‘ID’
in their names to prevent ChatGPT from suggesting timestamp-

based features (T3).

We also observe an instance with P5, where ChatGPT asks a

“clarifying question” in response to the user provided prompt.

This interaction made P5 feel assured that ChatGPT “is able to
understand the prompt”, and “make sense of the data context” :

P5: Consider this dataset for the prediction of response
time: [First 10 rows with header]
ChatGPT: How is response time calculated?
P5: Response time is first_onscene_datetime – incident_datetime

4.3.2 Re-using previously authored code. Data scientists mentioned

that they periodically receive new batches of data, for which they

must re-run analyses and visualization reports, and re-train models

(P3, P5, P6, P7, P11). In such cases, data scientists are already familiar

with the structure of the data, and they reuse previously written

code for data pre-processing and cleaning. P11 mentioned, “We
pretty much just copy and paste canned code for every project. A
lot of variations can be created on the charts, but 80% of it would
be repeating.” The need to author new code for pre-processing or

analytics in such scenarios is rare. However, P7 and P11 suggest

that LLMs can help automate retrieval of such snippets, and report

any anomalies in newer batches of data for human-inspection.

5 Study 2: Confirmatory Survey
To validate findings from Study 1, we conducted a survey with a

broader population of 114 data scientists. The confirmatory survey

is aimed to enhance the generalizability of our findings from study

1, and explore whether data scientists using different tools for a

wider assortment of data science tasks encountered similar benefits

or challenges when utilizing LLMs for data science tasks.

5.1 Methodology
Survey protocol. We used findings from Study 1 responses to frame

at least one question for each identified obstacle. The survey con-

sisted of 8 ‘Agree’/‘Disagree’ statements, and all questions were

optional to answer. Finally, to evaluate if our observations from

Study 1 reached theoretical saturation, we asked respondents to

indicate if they have faced any other difficulties in using LLMs for

data science tasks that were not mentioned in the survey questions.

Respondents. 114 data scientists responded to the survey. After

inspecting whether the respondents have meaningful prior experi-

ences (D2), we removed 16 respondents (14%) that had no experience

with using LLMs for data science tasks. We report all findings using

the screened responses. 76% of the respondents self-reported having

more than 5 years of experience in data science related professional

roles. We discuss the survey results in Section 5.2.

5.2 Survey Results
The survey results help us understand how well do the identified

obstacles (Section 4) generalize to a diverse set of data science tasks,

tools, and to a broader community of data scientists. The survey

respondents report experience with using LLMs for varied data

science tasks spanning across project timelines, including synthetic

data generation, wrangling, pre-processing, labelling, exploratory

analysis, insight finding and summarization, hypothesis generation,

training models, outlier detection, and generating plots.

Figure 1 shows the distribution of responses for each question.

Results indicate that data scientists find sharing of relevant data con-

text to be important (86%), as well as tedious (59%), echoing findings

from Section 4.1. 62% data scientists agreed that prompting Chat-

GPT for columns with mixed formats is challenging, reflecting the

issues discussed in Section 4.1. These challenges lead to communi-

cation breakdowns between data scientists and ChatGPT—causing

them to make repeated prompt refinements (92%) (Section 4). Re-

spondents also indicate that LLMs do not have sufficient domain

expertise in data science (60%) (Section 4.1), and that generated

code requires several modifications (87%) (Section 4.2).

5



HILDA’ 25, June 22–27, 2025, Berlin, Germany Bhavya Chopra, Ananya Singha, Anna Fariha, Sumit Gulwani, Chris Parnin, Ashish Tiwari, and Austin Z. Henley

Question %disagree %agree

D NR A
It is easy to decide if a data science task is suitable for ChatGPT 44 2 52 45% 53%

Including data context in the prompt leads to better responses 8 6 84 8% 86%

It is tedious to assess and find relevant context for the prompt 34 6 58 35% 59%

Prompting for columns with mixed formats is challenging 20 17 61 20% 62%

LLMs do not have sufficient domain expertise in data science 29 10 59 30% 60%

I will likely go back and forth with ChatGPT to refine my prompt 5 3 90 5% 92%

Generated code will need several changes 10 3 85 10% 87%

It is easy to verify code generated by ChatGPT 43 8 47 44% 48%

Disagree Agree

Response Counts Distribution

Figure 1: Distribution of survey responses. Response Counts: D (Disagree); NR (No Response); A (Agree).

6 Design Recommendations
In this section, we discuss the implications of our findings and

identify the ways in which they could be adapted to various data-

science environments.

Recommendation I—Provide preemptive and fluid context when inter-
acting with AI assistants. Participants spent a significant amount of

time constructing prompts (Section 4) and gathering and expressing

their context (Section 4.1) to ChatGPT. Nearly 45% of the prompts

included portions of data that they either manually entered, or

wrote additional code snippets to obtain; however, participants did

not enjoy being “slowed-down” in fetching this data context for ev-

ery interaction. Thus, data scientists need help in providing context

about their environments, and we should support mechanisms to

either preemptively provide implicit context [24], or provide fluid

interactions that allow data scientists to easily refer to fragments of

their work in conversations with AI assistants. In data visualization,

classic techniques such as brushing [8], enable a user to select and

highlight specific data points, allowing the user to use those data

points as a filter, or as a point of interest for further analysis. Recent

advancements in Retrieval-Augmented Generation (RAG) can assist

in dynamic retrieval of relevant data slices, code, outputs, or notes

to ground AI responses [30].

Recommendation II—Provide inquisitive feedback loops and planning
assistance. For transactional tasks, such as T1 (datetime typecast),

ChatGPT often provided satisfactory responses. Unfortunately,

long-form tasks, such as T3 (feature selection), required a more in-

volved conversation with ChatGPT. Initial responses from ChatGPT

were often “excessively long” and were not particularly helpful for

the task. As a result, participants were uncertain how much value

would be gained by continuing the conversation or what further

information would help (Section 4.1). One mechanism to help data

scientists have more productive conversations with AI assistants is

through inquisitive feedback loops, where the system guides the user

in expressing what they need by proactively asking the user a series

of questions [22]. Recent work in agentic AI may support this need,

where AI assistants take a goal-oriented role and plan multi-step

solutions, check with users for missing context, and adjust their

strategy dynamically [41].

Recommendation III—Provide support for code adaptation and valida-
tion. In several cases, participants performed task-decomposition,

which often lead to errors, e.g., as ChatGPT always included code

to ingest the dataframe—regardless of the stage of conversation—

some participants accidentally executed it, leading to their data

being over-written (Section 4.2). Tools for supporting refactoring,
behavior-preserving transformations, can be one approach for as-

sisting data scientists who must make repeated edits of similar

nature, or adapt generated code snippets to their local notebook

contexts (Section 4.2). For instance, GhostFactor [16] is a light-

weight program analysis tool with refactoring detection algorithms

that identify incomplete changes to code.

Recommendation IV—Provide transparency about shared context and
domain expertise slots. Barke et al. [6] posit that lack of transparency
about the shared context, and lack of control in refining the context

selections can leave users in a confused state. Our participants echo

a similar consideration, wherein they expressed the urge to “get to
the first response as fast as possible, but have the ability to look at
what context was provided and edit it if I need to refine my prompt”
(P3, P4, P7, P12). Even with automated context management or

prompt augmentation, it is important to consider how that context is

ultimately shared. For example, having sufficient transparency into

the shared context can enable data scientists to ensure that sensitive

data does not leak into the prompt. Data-science environments

interacting with AI should consider mechanisms for ensuring a

two-way knowledge transfer between users and AI. For example,

an AI assistant chat interface could integrate a context panel, a
dedicated, editable grid that mirrors the AI assistant’s and user’s

assumptions about data and tasks.

7 Conclusions
To understand fundamental obstacles, needs, and design oppor-

tunities in using AI assistants for data science, we conducted a

task-based study and confirmatory survey. We found participants

faced two key sets of barriers: in communicating with LLMs about

data, and in adapting LLM responses to their specific situation. Par-

ticipants spent considerable time collecting information to provide

to ChatGPT, such as relevant dataset slices or descriptive statistics.

Furthermore, ChatGPT often made assumptions unbeknownst to

users, leading to bugs and additional things to remedy. Even when

ChatGPT gave useful responses, adapting the code to fit existing

workflows and preferences took effort. We offer key design recom-

mendations for data science tools, such as flexible context selection,

preemptive data summaries, and inquisitive feedback loops.

6



Challenges in Using Conversational AI for Data Science HILDA’ 25, June 22–27, 2025, Berlin, Germany

References
[1] 2023. Anaconda Assistant Launches to Bring Instant Data Analysis, Code Genera-

tion, and Insights to Users. https://www.anaconda.com/blog/anaconda-assistant-

launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users.

[2] 2023. Introducing Databricks Assistant, a context-aware AI assistant. https:

//www.databricks.com/blog/introducing-databricks-assistant.

[3] 2024. DataChat. https://datachat.ai/.

[4] 2024. Overview of Predictive Transformation. https://help.alteryx.com/

aac/de/trifacta-classic/concepts/feature-overviews/overview-of-predictive-

transformation.html.

[5] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk

Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,

et al. 2021. Program synthesis with large language models. arXiv preprint
arXiv:2108.07732 (2021).

[6] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded

Copilot: How Programmers Interact with Code-Generating Models. 7, OOPSLA1,

Article 78 (April 2023), 27 pages.

[7] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. Au-

toPandas: Neural-Backed Generators for Program Synthesis. Proc. ACM Program.
Lang. 3, OOPSLA, Article 168 (oct 2019), 27 pages.

[8] Richard A. Becker and William S. Cleveland. 1987. Brushing Scatterplots. Tech-
nometrics 29, 2 (1987), 127–142.

[9] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory programming.

In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 25–29.

[10] Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus

Barik. 2020. What’s Wrong with Computational Notebooks? Pain Points, Needs,

and Design Opportunities. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems (CHI ’20). Association for Computing Machinery,

New York, NY, USA, 1–12.

[11] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de

Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,

Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail

Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,

Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-

tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex

Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-

tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh

Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles

Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,

Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large

Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[12] Bhavya Chopra, Anna Fariha, Sumit Gulwani, Austin Z. Henley, Daniel Perelman,

Mohammad Raza, Sherry Shi, Danny Simmons, and Ashish Tiwari. 2023. CoWran-

gler: Recommender System for Data-Wrangling Scripts. In Companion of the 2023
International Conference on Management of Data (SIGMOD ’23). Association for

Computing Machinery, New York, NY, USA, 147–150.

[13] Noah Daniels. 2021. NY EMS Incident Dispatch Data. https://www.kaggle.com/

datasets/new-york-city/ny-ems-incident-dispatch-data.

[14] Yunhe Feng, Sreecharan Vanam, Manasa Cherukupally, Weijian Zheng, Meikang

Qiu, and Haihua Chen. 2023. Investigating Code Generation Performance of

ChatGPT with Crowdsourcing Social Data. In 2023 IEEE 47th Annual Computers,
Software, and Applications Conference (COMPSAC). 876–885.

[15] Martin Fowler. 2005. Bliki: Fluentinterface. https://www.martinfowler.com/

bliki/FluentInterface.html

[16] Xi Ge and Emerson Murphy-Hill. 2014. Manual Refactoring Changes with Auto-

mated Refactoring Validation. In Proceedings of the 36th International Conference
on Software Engineering (ICSE 2014). Association for Computing Machinery, New

York, NY, USA, 1095–1105.

[17] Paul Grice. 1991. Studies in the Way of Words. Harvard University Press.

[18] Ken Gu, Madeleine Grunde-McLaughlin, Andrew M. McNutt, Jeffrey Heer, and

Tim Althoff. 2024. How Do Data Analysts Respond to AI Assistance? A Wizard-

of-Oz Study. arXiv:2309.10108 [cs.HC]

[19] Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M. Drucker.

2024. How Do Analysts Understand and Verify AI-Assisted Data Analyses?

arXiv:2309.10947 [cs.HC]

[20] Philip J. Guo, Sean Kandel, JosephM. Hellerstein, and Jeffrey Heer. 2011. Proactive

Wrangling: Mixed-Initiative End-User Programming of Data Transformation

Scripts. In Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology (UIST ’11). Association for Computing Machinery, New

York, NY, USA, 65–74. https://doi.org/10.1145/2047196.2047205

[21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn

Song, and Jacob Steinhardt. 2020. Measuring massive multitask language under-

standing. arXiv preprint arXiv:2009.03300 (2020).
[22] Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. 2021.

An Inquisitive Code Editor for Addressing Novice Programmers’ Misconceptions

of Program Behavior. In Proceedings of the 43rd International Conference on Soft-
ware Engineering: Joint Track on Software Engineering Education and Training
(ICSE-JSEET ’21). IEEE Press, 165–170.

[23] Noah Hollmann, Samuel Müller, and Frank Hutter. 2023. LLMs for Semi-

Automated Data Science: Introducing CAAFE for Context-Aware Automated

Feature Engineering. arXiv:2305.03403 [cs.AI]

[24] Rogers Jeffrey Leo John, Dylan Bacon, Junda Chen, Ushmal Ramesh, Jiatong Li,

Deepan Das, Robert Claus, Amos Kendall, and Jignesh M. Patel. 2023. DataChat:

An Intuitive and Collaborative Data Analytics Platform. In Companion of the 2023
International Conference on Management of Data (SIGMOD ’23). Association for

Computing Machinery, New York, NY, USA, 203–215.

[25] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-

gler: Interactive Visual Specification of Data Transformation Scripts. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI
’11). Association for Computing Machinery, New York, NY, USA, 3363–3372.

https://doi.org/10.1145/1978942.1979444

[26] Sean Kandel, Andreas Paepcke, Joseph M Hellerstein, and Jeffrey Heer. 2012.

Enterprise data analysis and visualization: An interview study. IEEE Transactions
on Visualization and Computer Graphics 18, 12 (2012), 2917–2926.

[27] Majeed Kazemitabaar, Jack Williams, Ian Drosos, Tovi Grossman, Austin Henley,

Carina Negreanu, and Advait Sarkar. 2024. Improving Steering and Verification

in AI-Assisted Data Analysis with Interactive Task Decomposition. In Proceedings
of the 37th Annual ACM Symposium on User Interface Software and Technology
(UIST ’24). Association for Computing Machinery, New York, NY, USA, 19 pages.

[28] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew Begel. 2018.

Data Scientists in Software Teams: State of the Art and Challenges. IEEE Trans-
actions on Software Engineering 44, 11 (2018), 1024–1038.

[29] Sean Kross and Philip J. Guo. 2019. Practitioners Teaching Data Science in

Industry and Academia: Expectations, Workflows, and Challenges. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–14.

[30] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,

Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,

et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp tasks.

Advances in neural information processing systems 33 (2020), 9459–9474.
[31] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is

Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large

Language Models for Code Generation. arXiv:2305.01210 [cs.SE]

[32] Michael Muller, Ingrid Lange, DakuoWang, David Piorkowski, Jason Tsay, Q. Vera

Liao, Casey Dugan, and Thomas Erickson. 2019. How Data Science Workers

Work with Data: Discovery, Capture, Curation, Design, Creation. In Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19).
Association for Computing Machinery, New York, NY, USA, 1–15.

[33] David Noever and Forrest McKee. 2023. Numeracy from Literacy: Data Science

as an Emergent Skill from Large Language Models. arXiv:2301.13382 [cs.CL]

[34] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

[35] Luigi Quaranta, Fabio Calefato, and Filippo Lanubile. 2021. KGTorrent: A Dataset

of Python Jupyter Notebooks from Kaggle. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). 550–554.

[36] Itamar Shatz. Accessed 2025. Grice’s Maxims of Conversation: The Principles

of Effective Communication. https://effectiviology.com/principles-of-effective-

communication/.

[37] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Remote, but Connected:

How #TidyTuesday Provides an Online Community of Practice for Data Scientists.

Proc. ACM Hum.-Comput. Interact. 5, CSCW1, Article 52 (apr 2021), 31 pages.

[38] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov.

2014. How Social Q&A Sites Are Changing Knowledge Sharing in Open Source

Software Communities. In Proceedings of the 17th ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW ’14). Association for

Computing Machinery, New York, NY, USA, 342–354.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Proceedings of the 31st International Conference on Neural Informa-
tion Processing Systems (NIPS’17). Curran Associates Inc., Red Hook, NY, USA,

6000–6010.

[40] Cong Yan and Yeye He. 2020. Auto-Suggest: Learning-to-Recommend Data

Preparation Steps Using Data Science Notebooks. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data (SIGMOD ’20).
Association for Computing Machinery, New York, NY, USA, 1539–1554.

[41] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2023. React: Synergizing reasoning and acting in language models.

In International Conference on Learning Representations (ICLR).
[42] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen

Shi, Joshua Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex

Polozov, and Charles Sutton. 2022. Natural Language to Code Generation in

Interactive Data Science Notebooks. arXiv:2212.09248 [cs.CL]

7

https://www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users
https://www.anaconda.com/blog/anaconda-assistant-launches-to-bring-instant-data-analysis-code-generation-and-insights-to-users
https://www.databricks.com/blog/introducing-databricks-assistant
https://www.databricks.com/blog/introducing-databricks-assistant
https://datachat.ai/
https://help.alteryx.com/aac/de/trifacta-classic/concepts/feature-overviews/overview-of-predictive-transformation.html
https://help.alteryx.com/aac/de/trifacta-classic/concepts/feature-overviews/overview-of-predictive-transformation.html
https://help.alteryx.com/aac/de/trifacta-classic/concepts/feature-overviews/overview-of-predictive-transformation.html
https://arxiv.org/abs/2107.03374
https://www.kaggle.com/datasets/new-york-city/ny-ems-incident-dispatch-data
https://www.kaggle.com/datasets/new-york-city/ny-ems-incident-dispatch-data
https://www.martinfowler.com/bliki/FluentInterface.html
https://www.martinfowler.com/bliki/FluentInterface.html
https://arxiv.org/abs/2309.10108
https://arxiv.org/abs/2309.10947
https://doi.org/10.1145/2047196.2047205
https://arxiv.org/abs/2305.03403
https://doi.org/10.1145/1978942.1979444
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2301.13382
https://arxiv.org/abs/2303.08774
https://effectiviology.com/principles-of-effective-communication/
https://effectiviology.com/principles-of-effective-communication/
https://arxiv.org/abs/2212.09248

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Study 1: Methodology
	4 Study 1: Observations on Using ChatGPT for Data Science Tasks
	4.1 Communication Obstacles with ChatGPT
	4.2 Obstacles in Leveraging ChatGPT Responses
	4.3 Strategies to Overcome Obstacles

	5 Study 2: Confirmatory Survey
	5.1 Methodology
	5.2 Survey Results

	6 Design Recommendations
	7 Conclusions
	References

