
The Patchworks Code Editor: Toward Faster Navigation
with Less Code Arranging and Fewer Navigation Mistakes

Austin Z. Henley
University of Memphis

Memphis, Tennessee, USA
azhenley@memphis.edu

Scott D. Fleming
University of Memphis

Memphis, Tennessee, USA
Scott.Fleming@memphis.edu

ABSTRACT
Increasingly, people are faced with navigating large infor-
mation spaces, and making such navigation efficient is of
paramount concern. In this paper, we focus on the prob-
lems programmers face in navigating large code bases, and
propose a novel code editor, Patchworks, that addresses the
problems. In particular, Patchworks leverages two new inter-
face idioms—the patch grid and the ribbon—to help program-
mers navigate more quickly, make fewer navigation errors,
and spend less time arranging their code. To validate Patch-
works, we conducted a user study that compared Patchworks
to two existing code editors: the traditional file-based editor,
Eclipse, and the newer canvas-based editor, Code Bubbles.
Our results showed (1) that programmers using Patchworks
were able to navigate significantly faster than with Eclipse
(and comparably with Code Bubbles), (2) that programmers
using Patchworks made significantly fewer navigation errors
than with Code Bubbles or Eclipse, and (3) that programmers
using Patchworks spent significantly less time arranging their
code than with Code Bubbles (and comparably with Eclipse).

Author Keywords
Integrated development environment (IDE); code editor;
navigation; user study.

ACM Classification Keywords
D.2.6 Software Engineering: Programming Environments;
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous.

INTRODUCTION
Increasingly, people are faced with navigating large informa-
tion spaces. For example, foraging for information has been
recognized as a key part of sensemaking in such domains as
intelligence analysis [11] and end-user programming [13]. To
aid people in such activities, researchers have sought methods
to make navigation more efficient (e.g., [12]). In this paper,
we focus specifically on the problem that programmers face
in efficiently navigating source code. The navigation prob-
lem is particularly acute in programming, where modern pro-
grams may comprise millions of lines of code, organized into
hundreds of thousands of interrelated modules.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2557073

Traditionally, programmers main means of navigating code
has been the file-based code editor (e.g., the Eclipse Java edi-
tor); however, there is growing concern about how much time
programmers spend on navigation in such editors. For exam-
ple, one study found that programmers spent 35 percent of
their time on the mechanics of navigation [18]. Thus, a va-
riety of approaches have been proposed to make navigation
less time consuming.

One of the most common approaches is to augment a file-
based editor with shortcuts that the programmer can use to in-
stantly “jump” to locations in the code. Such approaches have
explored a variety of ways to generate shortcuts, such as us-
ing structural relationships in code (e.g., [20]), programmers’
natural language queries (e.g., [15]), collaborative tagging
(e.g., [31]), and programmer interaction behavior (e.g., [26]).
However, since these approaches support only certain types
of navigations, they do not entirely free programmers from
the inefficiencies of navigation in file-based editors.

To directly address the problems of file-based editors, re-
searchers have proposed a new paradigm of canvas-based
code editors (e.g., [3, 4, 9]). These editors aim to improve
programmer navigation efficiency by enabling programmers
to manipulate finer-grain fragments of code, as opposed to
whole files, and by enabling them to arrange those frag-
ments on a 2D canvas. Preliminary empirical evaluations
of these canvas-based editors have been generally favorable:
for example, one study found that programmers using Code
Bubbles made, on average, nearly half the navigation ac-
tions per minute as programmers using the file-based editor,
Eclipse [3]. However, opportunities to improve on the canvas-
based editor concept may remain.

In particular, the 2D canvas idiom may be the source of sev-
eral types of navigation inefficiency. Programmers seeking
code fragments on a large 2D canvas, may tend to make nav-
igation mistakes (i.e., navigating in the wrong direction) be-
cause of the large space of possible directions to navigate.
Moreover, arrangements of fragments on the canvas may re-
sult in on-screen clutter, increasingly the likelihood that a pro-
grammer will fail to visually locate a fragment he/she seeks.
Additionally, the 2D canvas idiom may lead programmers to
spend extra time and effort on arranging fragments; however,
such time may not be well spent if the programmer is not
far enough along in the sensemaking process to choose ef-
fective arrangements, or if arrangements quickly become ob-
solete because the programmer’s information needs change
rapidly (as recent research suggests [26]).



To address these concerns about canvas-based editors, we
propose a new editor concept, Patchworks. Patchworks seeks
to maintain the efficiency gains of canvas-based editors, while
reducing the number of navigation mistakes that program-
mers make and the time they spend arranging code. To
achieve these goals, Patchworks employs two new interface
idioms: the patch grid and ribbon. These features enable
programmers to edit and juxtapose code at a finer level of
granularity than file-based editors, while leaving less room
for navigation mistakes than canvas-based editors, and dis-
allowing many of the time-consuming window management
activities encouraged by canvas-based editors.

To validate the benefits that Patchworks provides, we con-
ducted an empirical evaluation that pitted Patchworks against
a representative file-based editor, Eclipse, and a representa-
tive canvas-based editor, Code Bubbles. In particular, the
evaluation investigated three research questions:

• RQ1: Do programmers using Patchworks navigate be-
tween fragments of code more quickly?

• RQ2: Do programmers using Patchworks make fewer nav-
igation mistakes?

• RQ3: Do programmers using Patchworks spend less time
arranging code fragments?

Our work makes several key contributions. First, we intro-
duce a novel code-editor design for efficient code naviga-
tion, Patchworks. Second, we contribute a working proto-
type of Patchworks for Java programming. Third, we con-
tribute the results of an empirical evaluation that show (1) that
programmer navigation in Patchworks and in Code Bubbles
was significantly faster than in Eclipse, (2) that programmers
made significantly fewer navigation mistakes in Patchworks
than in Eclipse or in Code Bubbles, and (3) that program-
mers spent significantly less time arranging code fragments
in Patchworks and in Eclipse than in Code Bubbles.

BACKGROUND

How Programmers Navigate Code
Empirical studies have found that programmers spend consid-
erable time navigating among fragments of code. For exam-
ple, one study found that programmers spent, on average, 35
percent of their time navigating between relevant code frag-
ments [18]. One reason for this navigation is that program-
mers spend a lot of time seeking information in their code en-
vironment. One recent study found that programmers spent
50 percent of their time foraging for information [28]. Simi-
larly, another study found that information “scent” was a sig-
nificant predictor of where programmers would navigate [21].

One reason for all this information foraging may be that a pri-
mary challenge in debugging or adding a feature to a piece of
software is identifying all the code relevant to the task, which
is called the programmer’s working set [19]. The process
of identifying this code typically involves traversing relation-
ships between fragments of code (e.g., following control flow
dependencies). However, programmers may spend consider-
able time inspecting irrelevant code, as one study found [18],
or even “getting lost” in the code, as another found [8].

In addition to exploratory navigations for finding relevant
code, programmers also navigate frequently within their
working sets. For example, one study of predictive models
of programmer navigation found that the strongest predictor
of which method a programmer would click in next was how
recently he/she had visited the method (more recently implies
more likely) [27]. This finding agrees with another study of
models of programmers’ information foraging behavior that
found that the foraging model that took recency into account
was the strongest predictor [22]. Thus, the programmers
tended to repeatedly revisit the same code fragments.

However, these recency results may also suggest that the code
sought by a programmer evolves as the task progresses. In
particular, navigation decisions may be tied to the program-
mer’s evolving information goals during information forag-
ing. One recent study supported this idea with the finding
that using only the last (one) navigation to predict where a
programmer would go next produced more accurate predic-
tions than using his/her last ten navigations [26].

As programmers navigate to revisit code fragments, their spa-
tial memory may affect how efficiently they locate the frag-
ments. Spatial memory is the ability to remember the location
or orientation of objects. It has been leveraged to improve
users’ navigation times in graphical user interfaces [10], web
sites [5], file systems [12, 16], and source code [7]. For ex-
ample, Code Thumbnails [7] aids programmers in building
spatial memory of source code by giving them a zoomed-out
visualization of code files, laid out on a 2D canvas.

File-Based Code Editors
At present, file-based editors are the dominant tool paradigm
that programmers use to create, modify, and navigate source
code, and the empirical evidence above is mostly based on
programmers using such editors. Most modern development
environments, including Eclipse, NetBeans, and Visual Stu-
dio, employ file-based editors. In this paper, we will focus
on the Eclipse1 code editor as an exemplar of this paradigm.
A key characteristic of file-based editors is that for reading
and editing, they present the code in units by file. For exam-
ple, Fig. 1 shows an Eclipse editor with the contents of one
file (Buffer.java) displayed. To open a file, environments typ-
ically provide features for navigating the file system and for
exploring the hierarchy of code modules (e.g., Java packages,
classes, and methods). Since the editors we will be discussing
do not vary significantly in this regard, we will say little more
about such features. To navigate among code fragments (such
as methods) within a file, the main capability that file-based
editors provide is vertical scrolling. To navigate among open
files, editors typically employ tabs that the user can click or
cycle through using keyboard shortcuts (Fig. 1B).

Given the considerable time that programmers spend navigat-
ing in Eclipse [18], several qualities of traditional file-based
editors may hinder efficient navigation. First, because pro-
grammers’ working sets may contain only a subset of the
methods in a file, navigating between two such methods may
involve scrolling back and forth over irrelevant code. In such
1http://www.eclipse.org/

http://www.eclipse.org/


Figure 1. Eclipse’s file-based editor, including (A) a vertically scrollable
file, (B) visible tabs, and (C) two elided tabs.

cases, the programmer must take care not to miss the method
he/she seeks as the code scrolls by. Additionally, scrolling
through text has been found to disrupt a person’s spatial mem-
ory [24, 25].

Second, because a programmer’s working set may contain
methods from a variety of files, navigating between such
methods may involve a combination of scrolling and tab
switching. However, if the programmer has too many tabs
open, editors will typically begin eliding tabs, as in Fig. 1C.
This automatic eliding may also disrupt the programmer’s
spatial memory. Moreover, revealing the elided tabs and
choosing one involves additional clicking, which takes time.

Third, if a programmer wants to navigate back and forth be-
tween two methods, it stands to reason that having both meth-
ods on screen at the same time (i.e., juxtaposing the meth-
ods) would be ideal; however, traditional file-based editors
lack effective features for juxtaposing. For example, although
Eclipse provides features for splitting the editor view so that
two files can be viewed at once, programmers rarely use these
features [3, 19]. Moreover, prior research suggests that pro-
grammers actually want to juxtapose code [1], but find doing
so in file-based editors inconvenient [3, 19].

To address the inefficiencies of navigation using file-based
editors, a number of approaches augment such editors by pro-
viding shortcuts (i.e., hyperlinks) to places in the code. One
common approach is linking code elements in the editor to
structurally related elements. For example, in Eclipse, a pro-
grammer can select a variable name in the editor, and in a
single action, link to that variable’s declaration. Other ap-
proaches have included searching based on natural language
queries (e.g., [15]), enabling programmers to leave tags in the
code and provide shortcuts to those tags (e.g., [31]), and using
programmers navigation histories to infer and link to places
in the code that might be relevant (e.g., [8, 26]). However,
none of these approaches have superceded the file-based edi-
tor paradigm, and programmers still commonly use scrolling
and tabbing features to navigate between fragments of code,
and thus, experience the inefficiencies discussed above.

Canvas-Based Code Editors
To address the problems with file-based editors, researchers
have proposed a new paradigm of canvas-based code editors
that enable programmers to work with more fine-grain code

Figure 2. The Code Bubbles editor, including (A) a number of bubbles,
(B) a workspace bar, and (C) a package explorer.

fragments and to arrange those fragments on a 2D canvas.
This approach mitigates two key problems with file-based
editors: First, it enables the programmer to focus only on
relevant code fragments, rather than having to negotiate all
the fragments in a file. Second, juxtaposing code fragments
on a canvas is considerably more efficient than in file-based
editors. Several tools have been proposed that follow this
paradigm: the Self programming system [30], JASPER [4],
Code Canvas [9], and Code Bubbles [2, 3]. In the remainder
of the paper, we focus on Code Bubbles as a representative
example of the canvas-based paradigm.

Fig. 2 depicts the Code Bubbles editor, which enables the pro-
grammer to view and edit code fragments at the granularity of
methods (as well as whole files). It presents the fragments in
resizeable “bubbles” (the green and red boxes in Fig. 2). The
programmer can arrange the bubbles on a large 2D canvas that
extends well beyond the visible area on screen. Code Bubbles
also has features for grouping bubbles and for automatically
drawing edges between bubbles that represent declaration re-
lationships (neither of which are shown in the figure). Ad-
ditionally, Code Bubbles has a workspace bar (Fig. 2B) that
shows a bird’s eye view of the canvas.

Although the canvas-based paradigm may address some prob-
lems of file-based editors, it may also introduce new ones.
There are several potential problems with arranging frag-
ments on the canvas. First, there are many more possible
places to place a fragment on a 2D canvas than, for example,
there are to put a tab in the tab list; however, at the time that a
programmer is opening code, he/she may not have sufficient
understanding of the program or task to make a quick, effec-
tive decision about where to place the fragment. For exam-
ple, a recent study showed that people required a rich mental
model of a topic before they could effectively structure (i.e.,
arrange/organize) information on the topic [17]. Second, if
programmers’ goals are rapidly changing (as per reactive in-
formation foraging [22, 26]), arrangements may be quickly
rendered obsolete and not useful. Third, because it is com-
mon for fragments in canvas-based editors to automatically
respace themselves, inserting a fragment near a group of frag-
ments can cause those in the group to move in a cascading
fashion. If the programmer does not see how the fragments
have moved, it could undermine his/her ability to leverage
spatial memory for navigation.



There may also be several issues with navigating about the
2D canvas. First, if there are too many fragments on screen,
the programmer may have to resort to visual searching, which
is relatively slower than spatial memory [14]. In fact, the
creators of Code Bubbles specifically claim that it can show
more code on screen than Eclipse, saying that it can fit,
on average, 20 randomly selected methods from the JEdit
project [2]. But if programmers place that much code on
screen, the fragments may begin to all look alike, depriving
the programmer of landmarks to spatially orient him/herself.
Moreover, the programmer may be more likely to miss a
sought method. Second, if the programmer must navigate to
off-screen fragments, the large space of possible directions in
which to navigate may increase the chance of navigation mis-
takes. Consider how this situation compares to a vertically
scrolling file-based editor where the programmer has only
two scrolling choices: up or down. However, in a 2D can-
vas, the programmer can pan in 360 degrees—considerably
more room for navigational errors. Third, while navigating
in the 2D canvas, the programmer may have difficulty iden-
tifying landmarks and orienting him/herself, which has been
shown to be important for spatial memory [6], because of the
potentially large number of similar-looking fragments.

PATCHWORKS
To overcome apparent issues with both traditional file-based
editors and the canvas-based editors, we propose the Patch-
works tool concept. Like the canvas-based editors, Patch-
works allows the programmer to view and edit fine-grain code
fragments (methods, in particular). However, Patchworks
abandons the canvas idiom, and introduces instead two new
idioms: the patch grid and the ribbon.

The Patch Grid
Fig. 3 depicts our Patchworks prototype. The main part of
the editor consists of a 3×2 grid of patches (Fig. 3B). Each
patch is an editor that can hold code fragments at a variety of
granularities, including method, class, and file. For our initial
prototype, we tentatively chose for the grid to have 6 patches,
a decision based on working memory capacity (7±2) [23] as
well as an attempt to optimize the use of screen space while
avoiding visual clutter; however, we defer to future work the
question of what the optimal number of patches might be.

A key design decision was to make the grid of patches fixed:
the programmer can neither adjust the size of a patch nor the
number of patches. In contrast to canvas-based editors, such
as Code Bubbles, we intentionally restrict the ways in which
programmers can arrange their code to discourage wasting ef-
fort on creating arrangements that provide little benefit. For
example, Plumlee and Ware [29] argue that having users man-
age windows adds considerable complexity due to the time
and attention of sizing and positioning them. Thus, Patch-
works aims to alleviate this complexity by disallowing such
window management. Moreover, because the patches are spa-
tially in six fixed positions, the programmer may be less likely
to miss fragments he/she is seeking and be able to scan more
efficiently. Also, the patch titles always being in the same
screen locations may be beneficial since it has been shown
that labels enhance spatial memory [16].

Code fragments can be moved between patches in several
ways. A code fragment can be opened in a patch by drag-
ging an element from the package explorer (Fig. 3A) into the
patch. The Patchworks package explorer is essentially equiv-
alent to that of Eclipse and Code Bubbles. Fragments may
be moved between patches by dragging from one patch to an-
other. If there is an existing fragment in the destination patch,
the contents of the patches are swapped.

Fig. 4 depicts the features of an individual patch. A patch con-
sists of a title bar with the name of the fragment (Fig. 4A), a
close button (Fig. 4B), and a code-fragment editor (Fig. 4C).
The fragment name is based on the type of the fragment, so
a method fragment gets the name of the method plus its pa-
rameters, a class gets the name of the class, etc. The fragment
editor has common code-editor features, such as syntax high-
lighting and code folding. Clicking the close button removes
the fragment from the patch, leaving the patch empty.

The Ribbon
Although the patch grid contains only six visible patches at
a time, conceptually, the six patches constitute a view into a
never-ending ribbon of patches. Fig. 5 depicts the ribbon con-
cept. The visible patch grid can be shifted left or right along
the ribbon via keyboard shortcuts or menu items. Patchworks
animates left/right shifts to convey to the programmer the
feeling of moving along the ribbon.

A key design decision was to make the ribbon extend out
along one dimension, as opposed to, say, a 2D grid. By re-
stricting the ribbon to one dimension, the programmer can
slide in only two directions along the ribbon, left or right. In
contrast to a 2D canvas, this considerably reduces the room
for the programmer to make a navigation mistake (e.g., by
navigating in the wrong direction). This idea is consistent
with prior evidence comparing 2D and 3D interfaces. For ex-
ample, one study of both physical and virtual 2D and 3D sys-
tems found that the participants’ ability to locate information
deteriorated as dimensionality increased, and that the partici-
pants reported the higher dimension systems to be more clut-
tered and less efficient [5].

Similar to Code Bubble’s workspace bar, Patchworks has a
ribbon view (Fig. 6) that presents a bird’s eye view of the
ribbon. The programmer can use the ribbon view to adjust
the visible patch grid. In contrast to Code Bubbles, the rib-
bon view provides information about each patch, and the pro-
grammer can manipulate patches in the ribbon. Each frag-
ment in the ribbon view includes a name (in a title bar), a
thumbnail preview of its contents, and a close button. The
programmer can use the ribbon view to add, move, swap, and
close patches (via the same interactions as in the patch grid).

EVALUATION METHOD
To address our three research questions, we conducted a con-
trolled study that compared our Patchworks editor to a tra-
ditional file-based editor, Eclipse, and a canvas-based editor,
Code Bubbles. Thus, there were three treatments, one for
each editor. To test a treatment, participants used the editor to
perform tasks on a Java code base that involved opening and
arranging methods (i.e., code fragments), and navigating to



Figure 3. The Patchworks editor, including (A) a package explorer and (B) a 3×2 patch grid. Four of the patches contain code fragments and two are
empty.

Figure 4. A patch, including (A) a title bar, (B) a close button, and (C) a
code-fragment editor.

Figure 5. The conceptual ribbon of patches.

Figure 6. Patchworks’ ribbon view, which provides a bird’s eye view of
the ribbon.

methods. Due to time constraints, each participant received
only two of the treatments, randomly assigned, but balanced
so that each treatment was tested equally. Since each partici-
pant tested two editors, there were two task sets, one for each
editor. We blocked for two potential confounds: treatment
order (due to learning effects) and task set. In addition to
addressing our main RQs, we also assessed the participants’
subjective opinions of the editors.

Participants
Our participants consisted of 15 university students (12
males, 3 females; 14 graduate, 1 undergraduate). They re-
ported, on average, 4.9 (SD = 2.6) years of programming
experience. All participants reported having at least 2 years
of Java programming experience and some experience with
Eclipse. None of the participants were familiar with Code
Bubbles or Patchworks.

Subject Code Base
Each of the two task sets involved opening, arranging, and
navigating code from the JEdit open-source text editor. We
chose JEdit because it is a real-world software project, com-
prising 5876 Java methods and 98,718 lines of code. Each
task set involved a different group of 30 methods. To enhance
ecological validity, the methods in each group were all rele-
vant to a particular concern. One of the concerns pertained to
JEdit’s autosave feature and the other pertained to text fold-
ing. We generated the groups using Suade [32], an automated
software engineering tool for mapping methods to concerns.

Task Sets
Each task set had the following format, differing only in the
concern code involved. First, the participant performed a
method-opening and code-arranging task. He/she was given
the list of 30 methods related to the concern, along with the
reason why each method was included, and instructed to open



all the methods and arrange them as he/she saw fit. The par-
ticipant was also told that he/she could take as much time
as he/she wanted to do this arranging. We did not reveal to
the participant that we were timing this task. Next, the par-
ticipant performed a series of 10 navigation tasks. For each
navigation task, the participant was shown a card with the
name of a method (as well as its package and class), and in-
structed to navigate to the method as quickly as possible. We
asked participants not to use code-search features, because
such features do not vary significantly among the editors, and
were not the focus of this evaluation. The participant had to
successfully complete each navigation task before beginning
the next one, and we informed the participant that we were
timing these tasks.

Procedure
Each participant’s session took roughly 60 minutes. First,
the participant filled out a background questionnaire, and was
given an overview of the session format. Next, the participant
performed the two task sets described above, each using a dif-
ferent tool. Before starting each task set, the participant was
briefly introduced to the features of the tool he/she would be
using. Last, the participant filled out a questionnaire regard-
ing his/her opinions of the editors. If the participant used
Patchworks, he/she also answered a set of Likert-scale ques-
tions regarding his/her opinion of Patchworks. In addition to
the questionnaire responses and recorded times, the collected
data comprised audio and video of each participant’s task per-
formance, including screen-capture video.

Analysis Method
Statistical Tests
Following standard practice, we tested the distributions of
our data for normality to decide whether parametric or non-
parametric statistical tests were appropriate. For RQ1 (navi-
gation time) and RQ2 (number of mistakes), the Shapiro-Wilk
test showed that for each treatment, the recorded times and
counts were most likely not normally distributed (p < 0.01
for each), so we used the non-parametric Kruskal-Wallis rank
sum test for those data. On the other hand, for RQ3 (arrang-
ing time), based on Shapiro-Wilk, we could not reject the null
hypothesis that any of the recorded times were normally dis-
tributed (p > 0.05 for each treatment), so we used the para-
metric analysis of variance (ANOVA) test for those data.

Our clustering by participant might have violated the data in-
dependence assumption of our statistical tests; however, we
found near 0 correlation between participant and navigation
time (Spearman’s rs = 0.06), between participant and mis-
takes (Spearman’s rs = −0.06), and between participant and
opening time (Pearson’s r = −0.03). Thus, we conclude that
participant had no significant effect on our response variables.

Navigation-Mistake Coding
To identify participants’ navigation mistakes during their nav-
igation tasks, we used the following objective criteria. We
coded a navigation action as a mistake if the action moved
the participant’s view farther away from the target method. In
our coding, we merged sequences of repeated mistakes into
a single mistake. In Eclipse, scrolling in the wrong direction

Figure 7. Method for coding navigation mistakes in Code Bubbles when
the participant’s target bubble is out of view.

or selecting the wrong file tab constituted a navigation mis-
take. In Patchworks, shifting the view along the ribbon in the
wrong direction constituted a navigation mistake.

In Code Bubbles, identifying mistakes was complicated by
the 2D canvas. If the target bubble was in view (i.e., the
majority of the bubble and its entire name were visible on
screen), we coded a mistake if a navigation action caused the
bubble to go out of view (i.e., majority off screen or name
obscured). Fig. 7 illustrates how we coded mistakes if the
target bubble was out of view. In such cases, we coded a mis-
take if the participant’s navigation action caused the center of
his/her view to move in any of the directions labeled mistake
directions. To eliminate small unintentional moves and other
artifacts of using a mouse, we counted only moves that re-
sulted in bringing an out-of-view bubble (not necessarily the
target) into view.

Additionally, we identified misses, that is, navigation mis-
takes in which participants had the target method in view, but
failed to spot it. To count as a miss, the majority of the target
method had to be in view, and the participant had to perform
a navigation action that moved the method out of view.

RESULTS

RQ1 Results: Navigation Time
As Fig. 8 shows, the mean navigation times for participants
using Code Bubbles and Patchworks were considerably lower
than for those using Eclipse. In fact, participants’ navigations
in Eclipse took, on average, roughly double the time they
did in Patchworks. Indeed, the results of a Kruskal-Wallis
test revealed a significant effect of editor on navigation time
(χ2(2) = 12.1, p < 0.01). Furthermore, a pairwise multiple-
comparisons test showed that participants’ navigation times
with Eclipse were significantly greater than with Code Bub-
bles (p < 0.05) and with Patchworks (p < 0.05).

RQ2 Results: Navigation Mistakes
As Fig. 9 shows, participants made considerably fewer navi-
gation mistakes using Patchworks than using Eclipse or Code
Bubbles: Patchworks users make less than half the num-
ber of mistakes that Eclipse users and Code Bubbles users
made. The results of a Kruskal-Wallis test showed a signif-
icant effect of editor on number of mistakes (χ2(2) = 8.56,
p = 0.01). Looking at just the mistakes in which program-
mers failed to see a code fragment that was on screen (see the



Figure 8. Participants’ mean navigation times in Eclipse (n = 99), Code
Bubbles (n = 98), and Patchworks (n = 99). Whiskers denote standard
error.

Figure 9. The number of navigation mistakes that participants made
while navigating (out of 99 navigation tasks for Eclipse and Patchworks,
and 98 for Code Bubbles). Inner bars show the subset of mistakes that
were misses.

inner miss-mistake bars in Fig. 9), the effect of Patchworks
was even stronger: Patchworks users missed code fragments
one quarter or less of the number of times that they missed
a fragment in Code Bubbles and Eclipse. Again, a Kruskal-
Wallis test revealed a significant effect of editor on miss mis-
takes (χ2(2) = 6.22, p = 0.04).

RQ3: Time to Open/Arrange Code
As Fig. 10 shows, participants using Code Bubbles spent con-
siderably more time opening and arranging their code than
they did using Patchworks or Eclipse: for example, on av-
erage, Code Bubbles users took over 8 minutes longer than
Patchworks users (who took 24 min on average). Indeed, an
ANOVA test revealed a significant effect of editor on time
(F (2, 27) = 3.67, p = 0.04). Delving deeper into the model,
the regression coefficients, with Code Bubbles as intercept,
showed a significant difference between Code Bubbles and
both Eclipse (p = 0.02) and Patchworks (p = 0.04).

Participants’ Subjective Opinions
As Table 1 shows, all participants reported positive opin-
ions of Patchworks. Recall that each participant who used
Patchworks completed a Likert-style opinion questionnaire
(5 questions, each covering a different aspect of Patchworks).
Based on their responses, participants found Patchworks par-
ticularly easy to learn and use, and they would use the patch
grid and ribbon features if available in their IDE of choice.

Figure 10. Mean time that participants took to open and arrange their
code. Whiskers indicate standard error. n = 10 for each tool.

Table 1. Results of Patchworks opinion questionnaire (on a 7-point likert
scale from 7 = most favorable to 1 = least favorable).

When asked which of the tools they liked better and why,
participants also favored Patchworks most often. They ex-
pressed preferring Patchworks 2:1 over Eclipse and 2:1 over
Code Bubbles. Although they also preferred Code Bubbles
over Eclipse, the margin was smaller at 3:2.

DISCUSSION

Summary of Results
Table 2 summarizes the results of our evaluation, and as the
table shows, Patchworks matched or exceeded Eclipse and
Code Bubbles on each of the evaluation criteria. As a result,
Patchworks performed better overall (i.e., across all criteria)
than the other editors. In particular, Patchworks was able to
maintain the navigation speed gains of the canvas-based ap-
proach, Code Bubbles, but like the file-based Eclipse editor,
Patchworks users spent less time arranging their code frag-
ments. Moreover, Patchworks surpassed the other editors in
helping programmers avoid navigation mistakes.

In the remainder of this section, we discuss these results with
respect to our qualitative observations and the participants’
comments on the questionnaire, and close with a discussion
of our study’s limitations.

Eclipse: Excessive Scrolling Leads to Missed Methods
Based on our qualitative observations, participants’ long nav-
igation times in Eclipse appeared largely due to time spent
scrolling through files full of irrelevant code (as opposed to
switching tabs), and failing to see the methods they wanted
among that code. For example, P13 was searching for



Table 2. Summary of results. A check indicates statistical evidence, and
a tilde indicates evidence, but on a sample not amenable to statistics.
Two checks in the same row indicate comparable results (i.e. a tie).

the method updateStructureHighlight within a file,
TextArea.java, which was over 5500 lines long. In general,
participants had no trouble navigating to the correct file: only
two participants (P1 and P6) chose the wrong tab while nav-
igating. P13 was no exception, and he rapidly navigated to
the correct file tab; however, the editor had been previously
scrolled to the middle of the file, and the target method was
not in view. He began slowly scrolling toward the top of the
file, scanning over methods as he went. But after passing a
few methods, perhaps growing impatient, he suddenly began
scrolling much more rapidly. He quickly arrived at the top
of the file, having passed the target method without seeing it.
He then began scrolling back down the file, this time more
slowly; however, this slow pace did not last long. Again,
he sped up, passing the target method a second time with-
out seeing it, until finally arriving at the bottom of the file.
He repeated this process several times before finally spotting
his target. In total, he spent nearly 2 minutes scrolling, and
passed the method without seeing it 5 times.

Because users of Code Bubbles and Patchworks were able
to open code at the granularity of methods, they had the
advantage of never having to scroll through code to reach
their navigation targets. They had to search only through
the 30 methods related to their current concern, which they
navigated among by panning the view around the canvas in
Code Bubbles, and sliding the view along the ribbon in Patch-
works. Furthermore, Eclipse typically displayed only one or
two methods at a time on screen, whereas Code Bubbles and
Patchworks displayed substantially more methods, increasing
the chances that the participant’s target was already in view.
One final possible advantage Code Bubbles and Patchworks
users had was that the method names were clearly presented
in bubble or patch title bars, as opposed to being embedded
in blocks of text, as in the Eclipse editor.

Code Bubbles: More Organized, but Misses Still Common
Participants using Code Bubbles clearly invested more into
the arrangement of their code fragments than Patchworks or
Eclipse users. For example, when P3 performed the open-
ing/arranging task using Code Bubbles, he first arranged his
bubbles into four groups. However, apparently disatisfied
with this arrangement, he spent an additional 16 minutes and
13 seconds reorganizing them into six groups. In total, this
involved 270 bubble-moving actions. Similarly, P12 realized
he was spending considerable time arranging his bubbles, and
made several apologetic remarks: “sorry this is taking longer
[compared to Patchworks].” He later commented about Code

Bubbles being tougher to use than Patchworks: “the second
one [Code Bubbles] took more time for me because the drag-
ging and dropping those things [bubbles] around. . . ”

In contrast, participants spent little time arranging the patches
in Patchworks. In fact, only two participants moved a patch
after he/she initially placed it. We observed that most partici-
pants placed the code along the ribbon in one direction. When
asked what their strategy was for arranging the patches, sev-
eral participants (P4, P7, P10, and P15) said they placed them
sequentially along the ribbon. Other participants (P5, P11,
P14) said they didn’t have a strategy but P11 clarified that a
strategy wasn’t needed because of the ribbon view. Regard-
less of the strategy used, it was common for participants to
leave empty columns of patches between groups, possibly as
landmarks or separators.

Despite how much time Code Bubbles users spent arranging
their bubbles, they still made numerous navigation errors (sig-
nificantly more than Patchworks). A common mistake was
for Code Bubbles users to revisit bubbles they had already
seen while searching for a particular method. For example,
P2 arranged his bubbles into four columns, grouped by class
and function. On one of the navigation tasks, he started with
the viewing area at the top of his third column. The target
method, requestFocus, was on screen, but he failed to no-
tice it. Instead, he panned to the bottom of the column slowly,
and then back to the top. Still not seeing the method, he again
panned downwards, but only halfway down the column, be-
fore going back to the top and finally noticing the method.
P13 had a similar incident while performing a navigation. He
had arranged his bubbles in a large square-like shape grouped
by class. He started searching for the method read from
the bottom left corner of the canvas and then panned around
in a clockwise fashion, following the perimeter of his bub-
ble cluster. Eventually, he reached the part of the cluster
he had started from. He then panned around the perimeter
of his cluster two more times, only this time going counter-
clockwise. Finally, he spotted the method after having missed
it a total of three times.

Perhaps, for the above reasons, participants made several crit-
ical comments regarding Code Bubbles. For instance, P9 pre-
ferred Code Bubble to Eclipse, but added the caveat that Code
Bubbles is better only when the user is “cautious.” On the
other hand, P14 described Code Bubbles as “impressive,” but
still favored Eclipse.

Participant Feedback on Patchworks
In addition to the participants’ positive Likert scores regard-
ing Patchworks, a number of their questionnaire responses
got at “why” they liked it. For instance, Participant P15 said
that, compared to Eclipse, in Patchworks “It is much easier
to navigate.” Similarly, P13 described Patchworks as a “good
way to organize methods and work switching between them,”
and P3 commented that Patchworks “definitely gives me an
extra opportunity for quick navigation and for placing code
side by side for easy viewing.” P5 described Patchworks as
“very fluid,” and added “Eclipse is nice when only focusing
on one file at a time (as I usually am doing), but Patchworks
seems like a great tool for comparing and following code that



may not be organized in a way that makes sense to me (ex: if
I were viewing code someone else had written).” In compar-
ing Patchworks and Code Bubbles, Participant P10 even indi-
cated that the patch grid and ribbon features indeed overcame
issues with canvas-based editors: “because it’s easy to navi-
gate through the grid rather than a canvas.” These comments
are encouraging and lend credence to the idea that Patch-
works had successfully achieved its design objectives.

Participants also offered critical feedback and suggestions for
improving Patchworks. Participant P4 wanted more lines of
text in a patch, and P5 wanted more “zoom levels” for view-
ing the ribbon. P15 reported having difficulty finding the
method names of patches. (This information was presented
in a label at the top of each patch, but the font may have been
too small for him to see.) P11 reported feeling “clumsy” us-
ing Patchworks, and preferred Eclipse because it was “more
familiar.” She also expressed wanting search features like
Eclipse has, and support for multiple monitors (although she
did not give specifics). Most of these concerns seem straight-
forward to address, and we will consider them in future work.

Limitations
Our study had several limitations that should be addressed
in future work. First, from an ecological standpoint, the
tasks that the participants performed were artificial, and were
chosen to enable us to focus on our specific research ques-
tions. However, as a way to enhance ecological validity, we
had them work with code from a real-world software project
(JEdit), and we selected code fragments that were related to
a shared concern. An open question that we will address in
future work is how working with code over longer periods
of time affects programmer navigation (e.g., because the pro-
grammer has more time to develop spatial memory). Second,
all the participants in our study were students (mostly gradu-
ate), and it is an open question whether our results would hold
for seasoned professional developers. Third, reactivity ef-
fects may have influenced participant performance/responses;
however, we were careful not to tell participants which tool
was ours or what comparisons we were making. Although
participants certainly knew that Eclipse was not our tool, none
were familiar with Code Bubbles or Patchworks. Fourth, the
participants were using Code Bubbles and Patchworks for the
first time, and it is an open question how experts with those
tools might perform. However, it is encouraging that, despite
being unfamiliar, participants navigated significantly faster
with those tools than with the more familiar Eclipse.

CONCLUSION
In this paper, we have presented the novel Patchworks code-
editor, with its two new interface idioms: the patch grid and
the ribbon. Our aim was to help programmers navigate to
fragments of code more quickly and with fewer navigation
mistakes, and to help programmers spend less time arranging
code fragments. The results of our user study show promising
evidence that Patchworks fulfills these goals:

RQ1 (navigation time): Programmers using Patchworks
navigated significantly faster than those using Eclipse
(and comparably to those using Code Bubbles).

RQ2 (navigation mistakes): Programmers using Patch-
works made significantly fewer mistakes than those
using Eclipse and those using Code Bubbles.

RQ3 (arranging code): Programmers using Patchworks
spent significantly less time arranging code than those
using Code Bubbles (and a comparable amount of time
to those using Eclipse).

These findings suggest several promising directions for future
research. One open question is how programmers might best
arrange fragments in the ribbon. For example, Participant P15
said that his strategy was to lay the fragments out sequentially,
in the order he opened them. Scaling this strategy across time
and tasks, a programmer could continually build as-needed
clusters of patches in one direction along the ribbon, allow-
ing obsolete clusters to accumulate as he/she goes. Having
the patch clusters ordered by when they were accessed po-
tentially enables the programmer to leverage a combination
of temporal and spatial memory to locate patches. Build-
ing on this idea, the ribbon might be augmented with time-
sequence information or even manual tagging. Another open
question is how to support multiple monitors. The number of
patches in the patch grid might simply be expanded to fill the
available space, or alternatively, multiple patch grids might
be provided, each with an independent view of the ribbon. In
conclusion, answering these questions will represent a sub-
stantial step toward delivering programmers more fluid and
less frustrating code navigation, and helping them regain the
time they now lose to the tedious mechanics of navigation.

ACKNOWLEDGMENTS
We thank Dale Bowman Armstrong for her counsel on sta-
tistical methods. This material is based upon work supported
by the National Science Foundation (NSF) under Grant No.
1302117. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF.

REFERENCES
1. Bragdon, A. Creating simultaneous views of source

code in contemporary IDEs using tab panes and MDI
child windows: A pilot study. Tech. Rep. CS-09-09,
Brown Univ., 2009.

2. Bragdon, A., Reiss, S. P., Zeleznik, R., Karumuri, S.,
Cheung, W., Kaplan, J., Coleman, C., Adeputra, F., and
LaViola, Jr., J. J. Code Bubbles: Rethinking the user
interface paradigm of integrated development
environments. In Proc. 32nd ACM/IEEE Int’l Conf.
Software Eng., ICSE ’10 (2010), 455–464.

3. Bragdon, A., Zeleznik, R., Reiss, S. P., Karumuri, S.,
Cheung, W., Kaplan, J., Coleman, C., Adeputra, F., and
LaViola, Jr., J. J. Code Bubbles: A working set-based
interface for code understanding and maintenance. In
Proc. CHI ’10 (2010), 2503–2512.

4. Coblenz, M. J., Ko, A. J., and Myers, B. A. JASPER: An
Eclipse plug-in to facilitate software maintenance tasks.
In Proc. 2006 OOPSLA Workshop Eclipse Technology
eXchange, ETX ’06, ACM (2006), 65–69.



5. Cockburn, A., and McKenzie, B. Evaluating the
effectiveness of spatial memory in 2D and 3D physical
and virtual environments. In Proc. CHI ’02 (2002),
203–210.

6. Darken, R. P., and Sibert, J. L. Wayfinding strategies and
behaviors in large virtual worlds. In Proc. CHI ’96
(1996), 142–149.

7. DeLine, R., Czerwinski, M., Meyers, B., Venolia, G.,
Drucker, S., and Robertson, G. Code Thumbnails: Using
spatial memory to navigate source code. In Proc. IEEE
Symp. Visual Languages and Human-Centric
Computing, VL/HCC ’06 (2006), 11–18.

8. DeLine, R., Khella, A., Czerwinski, M., and Robertson,
G. Towards understanding programs through wear-based
filtering. In Proc. 2005 ACM Symp. Software
Visualization, SOFTVIS ’05 (2005), 183–192.

9. DeLine, R., and Rowan, K. Code Canvas: Zooming
towards better development environments. In Proc. 32nd
ACM/IEEE Int’l Conf. Software Eng., ICSE ’10 (2010),
207–210.

10. Ehret, B. D. Learning where to look: Location learning
in graphical user interfaces. In Proc. CHI ’02 (2002),
211–218.

11. Evans, B., and Card, S. Augmented information
assimilation: Social and algorithmic Web aids for the
information long tail. In Proc. CHI ’08 (2008), 989–998.

12. Fitchett, S., Cockburn, A., and Gutwin, C. Improving
navigation-based file retrieval. In Proc. CHI ’13 (2013),
2329–2338.

13. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,
Rector, K., and Kwan, I. End-user debugging strategies:
A sensemaking perspective. ACM Trans. Comput.-Hum.
Interact. 19, 1 (May 2012), 5:1–5:28.

14. Hick, W. E. On the rate of gain of information. Quarterly
Journal of Experimental Psychology 4, 1 (1952), 11–26.

15. Hill, E., Pollock, L., and Vijay-Shanker, K. Exploring
the neighborhood with Dora to expedite software
maintenance. In Proc. 22nd IEEE/ACM Int. Conf.
Automated Software Eng., ASE ’07 (2007), 14–23.

16. Jones, W. P., and Dumais, S. T. The spatial metaphor for
user interfaces: Experimental tests of reference by
location versus name. ACM Trans. Inf. Syst. 4, 1 (Jan.
1986), 42–63.

17. Kittur, A., Peters, A. M., Diriye, A., Telang, T., and
Bove, M. R. Costs and benefits of structured information
foraging. In Proc. CHI ’13 (2013), 2989–2998.

18. Ko, A. J., Aung, H., and Myers, B. A. Eliciting design
requirements for maintenance-oriented IDEs: A detailed
study of corrective and perfective maintenance tasks. In
Proc. 27th Int’l Conf. Software Engineering, ICSE ’05
(2005), 126–135.

19. Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung, H. H.
An exploratory study of how developers seek, relate, and
collect relevant information during software
maintenance tasks. IEEE Trans. Softw. Eng. 32, 12 (Dec.
2006), 971–987.

20. Krämer, J.-P., Kurz, J., Karrer, T., and Borchers, J.
Blaze: Supporting two-phased call graph navigation in
source code. In Ext. Abstracts CHI ’12 (2012),
2195–2200.

21. Lawrance, J., Bellamy, R., and Burnett, M. Scents in
programs: Does information foraging theory apply to
program maintenance? In Proc. IEEE Symp. Visual
Languages and Human-Centric Computing,
VL/HCC ’07 (2007), 15–22.

22. Lawrance, J., Burnett, M., Bellamy, R., Bogart, C., and
Swart, C. Reactive information foraging for evolving
goals. In Proc. CHI ’10 (2010), 25–34.

23. Miller, G. A. The magical number seven, plus or minus
two: Some limits on our capacity for processing
information. Psychol. Rev. 63, 2 (1956), 81–97.

24. O’Hara, K., and Sellen, A. A comparison of reading
paper and on-line documents. In Proc. CHI ’97 (1997),
335–342.

25. O’Hara, K., Sellen, A., and Bentley, R. Supporting
memory for spatial location while reading from small
displays. In Ext. Abstracts CHI ’99 (1999), 220–221.

26. Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C.,
Burnett, M., John, B., Bellamy, R., and Swart, C.
Reactive information foraging: An empirical
investigation of theory-based recommender systems for
programmers. In Proc. CHI ’12 (2012), 1471–1480.

27. Piorkowski, D., Fleming, S. D., Scaffidi, C., John, L.,
Bogart, C., John, B. E., Burnett, M., and Bellamy, R.
Modeling programmer navigation: A head-to-head
empirical evaluation of predictive models. In Proc. IEEE
Symp. Visual Languages and Human-Centric
Computing, VL/HCC ’11 (2011), 109–116.

28. Piorkowski, D. J., Fleming, S. D., Kwan, I., Burnett,
M. M., Scaffidi, C., Bellamy, R. K., and Jordahl, J. The
whats and hows of programmers’ foraging diets. In
Proc. CHI ’13 (2013), 3063–3072.

29. Plumlee, M. D., and Ware, C. Zooming versus multiple
window interfaces: Cognitive costs of visual
comparisons. ACM Trans. Comput.-Hum. Interact. 13, 2
(June 2006), 179–209.

30. Smith, R. B., Maloney, J., and Ungar, D. The Self-4.0
user interface: Manifesting a system-wide vision of
concreteness, uniformity, and flexibility. In Proc. 10th
Annu. Conf. Object-Oriented Programming Syst.,
Languages, and Applicat., OOPSLA ’95 (1995), 47–60.

31. Storey, M.-A., Cheng, L.-T., Bull, I., and Rigby, P.
Shared waypoints and social tagging to support
collaboration in software development. In Proc. Conf.
Computer Supported Cooperative Work, CSCW ’06,
ACM (2006), 195–198.

32. Warr, F. W., and Robillard, M. P. Suade: Topology-based
searches for software investigation. In Proc. 29th Int’l
Conf. Software Eng., ICSE ’07 (2007), 780–783.


	Introduction
	Background
	How Programmers Navigate Code
	File-Based Code Editors
	Canvas-Based Code Editors

	Patchworks
	The Patch Grid
	The Ribbon

	Evaluation Method
	Participants
	Subject Code Base
	Task Sets
	Procedure
	Analysis Method
	Statistical Tests
	Navigation-Mistake Coding


	Results
	RQ1 Results: Navigation Time
	RQ2 Results: Navigation Mistakes
	RQ3: Time to Open/Arrange Code
	Participants' Subjective Opinions

	Discussion
	Summary of Results
	Eclipse: Excessive Scrolling Leads to Missed Methods
	Code Bubbles: More Organized, but Misses Still Common
	Participant Feedback on Patchworks
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES 

