
An Inquisitive Code Editor for Addressing Novice
Programmers’ Misconceptions of Program Behavior

Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, Dylan Lee
University of Tennessee
Knoxville, Tennessee

azh@utk.edu, {jball16, bklein3, arutter1, dlee97}@vols.utk.edu

Abstract—Novice programmers face numerous barriers while
attempting to learn how to code that may deter them from
pursuing a computer science degree or career in software devel-
opment. In this work, we propose a tool concept to address the
particularly challenging barrier of novice programmers holding
misconceptions about how their code behaves. Specifically, the
concept involves an inquisitive code editor that: (1) identifies
misconceptions by periodically prompting the novice program-
mer with questions about their program’s behavior, (2) corrects
the misconceptions by generating explanations based on the pro-
gram’s actual behavior, and (3) prevents further misconceptions
by inserting test code and utilizing other educational resources.
We have implemented portions of the concept as plugins for the
Atom code editor and conducted informal surveys with students
and instructors. Next steps include deploying the tool prototype
to students enrolled in introductory programming courses.

Index Terms—Code editor, program comprehension, novice
programmers

I. INTRODUCTION

Novice programmers face numerous barriers while attempt-
ing to learn how to code that may deter them from pursuing
a computer science degree or career in software develop-
ment. In this work, we propose a tool concept to address
the particularly challenging barrier of novice programmers
holding misconceptions about how their code behaves. A
key reason that novice programmers have this issue is they
often have a different definition of program correctness than
professional programmers [34]. In fact, one study found that
many students believe a program is correct when there are
no compiler errors, but the students indicated little regard to
the program’s behavior [50]. These semantic errors, when the
program compiles but behaves differently than the programmer
expects, have vexed many students, and in another study, it
took students substantially longer to fix semantic errors than
syntax errors (if they were fixed at all) [1].

Towards addressing these issues, we propose an inquisitive
code editor that elicits information about program behavior
from novice programmers to address their misconceptions. The
editor will prompt them with questions about the program’s
behavior that can be verified using static analysis and utilize
the response as a learning opportunity for the programmer.
More specifically, the editor will do this by detecting po-
tentially buggy code using a code smell detector that is
attuned to mistakes made by novices. Then it will prompt

the programmer with a question about the program behavior
that can be validated with static analysis. If the programmer
answers incorrectly, the tool will provide an explanation about
the program behavior and insert assertions and comments into
the code. Given these features, the goals of the inquisitive
code editor are to (1) identify when a programmer has a
misconception about the program behavior, (2) correct the
misconception by explaining how the program will actually
behave, and (3) prevent the programmer from having similar
misconceptions again.

The foundation of our tool concept is based on prior
research on debugging tools, empirical evidence of mistakes
that novice programmers make, and tutoring systems. A no-
table research tool for debugging is Whyline, which enables
programmers to ask why and why not questions about their
program’s behavior [31], [32]. However, this may not be suit-
able for novices since Whyline requires that the programmer
already knows that a bug exists and is able to replicate the
buggy behavior. The aim of our inquisitive code editor is
to instead have the code editor asking the questions, such
that novice programmers have a more efficient feedback loop
regarding their program’s behavior and can effectively address
their misconceptions. Moreover, our concept makes use of
recent research on tutoring systems for learning to code (e.g.,
PLTutor [40] and Ludwig [48]).

In this paper, we present a detailed description of our novel
tool concept along with a mock implementation in the form
of a plugin for the popular Atom code editor (Section II).
We also share our preliminary results and efforts towards
researching the effectiveness of our technique (Section III).
Following that, we provide a detailed literature review of
relevant background information and related works (Section
IV). Finally, we conclude with the next steps in our research
towards investigating how to better address the misconceptions
of novice programmers (Section V).

II. IDEA: AN INQUISITIVE CODE EDITOR

To address the misconceptions that novice programmers
have about their code, we propose a novel concept of an
inquisitive code editor that elicits information about program
behavior from novice programmers to address their miscon-
ceptions. The editor concept does this through a three step
process. First, it can identify misconceptions by periodically



?

A

B

C

?

Fig. 1. (A) A mockup of the inquistive code editor for addressing mis-
conceptions as a plugin for the Atom code editor. (B) Code that may be
misunderstood is automatically annotated with a green question mark. (C)
Clicking the annotation displays a question for the programmer to answer
about how they think the program will behave.

prompting the programmer with questions about the program’s
behavior. Second, it can correct the misconceptions by gen-
erating explanations based on the program’s actual behavior.
Third, it can prevent further misconceptions by inserting
test code (e.g., assertions or unit tests) and documentation,
providing external help for more in-depth explanations, and
send aggregate reports to the instructor.

A. Identifying Misconceptions

The technique that we propose is for the editor to ask
the programmer questions about the behavior of specific
portions of code while the programmer is writing the code.
For example, it can ask, “How many times will this loop
iterate?”, along with a textbox or slider for the programmer
to input the range they believe is correct. Using program
analysis, the tool can compare the programmer’s answer to
how the analysis determined that the program will actually
behave. This example question could identify common loop
misconceptions, such as a loop that will only ever iterate one

time. Fig. 1-A depicts a mockup of a tool that extends a code
editor to annotate potentially problematic code (Fig. 1-B) and
pose questions to the programmer about the code (Fig. 1-C).

There are a number of design dimensions that need to
be studied in order to identify misconceptions effectively.
First, which misconceptions and code issues should the code
editor ask questions about (and how does it know this is
a potential bug)? There are existing databases of bugs that
students have encountered in various course settings, such as
Blackbox [5]. The tool could combine such a database with
existing code smell detector techniques. Second, how does the
tool determine the correct answer to how the program will
behave? There are a variety of program analysis techniques
that could be used (e.g., data-flow analysis) based on the
misconceptions targeted. These static and dynamic program
analysis techniques allow the editor to infer specific properties
about the program behavior (e.g., a loop will never terminate).
Third, how should programmers interact with the editor with-
out finding it distracting? From our prior work, we have found
that it is vital for the tool to work without upfront configuration
and without disruption to their workflow. For example, Yester-
code and CodeDeviant record code changes automatically and
provide visualizations that are available if the programmer
needs assistance, without upfront configuration [21], [22].
If our inquisitive editor is too disruptive, the programmer
will be less likely to use it and it may interfere with their
task, and thus contradict the goals we are trying to achieve.
Fourth, what other techniques could be used in conjunction
with program analysis for identifying misconceptions? Other
researchers have began looking into ways to identify when a
programmer is frustrated (e.g., [9], [39], [47]), which could
also be indicative of a misconception. Additionally, other
signals could be investigated to see if they correlate with
misconceptions (e.g., keyboard and mouse activity, inserting
breakpoints, or running the program repeatedly).

As such, our initial design is to annotate the potentially
problematic code in the code editor (shown in Fig. 1-B as a
green question mark), much like a syntax error. Annotating the
code is a deliberate alternative to interrupting the programmer
with a dialog window whenever the issue is identified. These
annotations are based on negotiable interruptions, notifications
that allow the user to attend to when they choose, and studies
have found them to be preferred in long, continuous tasks [37].
Fig. 1-C shows an example of a question that is posed to the
programmer after clicking the green question mark, indicating
a portion of code that may be indicative of misconceptions.
There are a variety of different question types and input forms
(e.g., fill in the blank, drag-and-drop, natural language, etc.)
that should be investigated.

B. Correcting Misconceptions

After identifying a misconception, our inquisitive code
editor aims to then correct programmers’ misconceptions. To
do so, the editor will present an explanation as to how the
program will actually behave and why the program will behave
that way. Using the programmer’s answer to the question (e.g.,



Fig. 1-C), the editor will generate a customized explanation
based on the specific misconception. More specific designs
can utilize findings from computing education research, such
as tutoring systems, hint generation, and enhanced compiler
errors.

There are two open questions regarding the features for
correcting programmers’ misconceptions: what information to
provide and how to present it. It is likely not sufficient to
just inform the programmer how the program will behave
(e.g., “This loop will never iterate more than 5 times.”). An
existing tool, the Whyline, was designed to help programmers
interrogate their program to understand why it is not behaving
as expected [31]. However, our goal is different in that
we want to assist the novice programmer in overcoming a
misconception that they do not even know they have yet. The
information needs of novice programmers is likely dependent
on the situation and context, and may need to be adapted based
on the environment.

Furthermore, an interactive explanation may lead to more
engagement and better understanding for the programmer.
For example, the editor could tell the programmer to test
the program with specific inputs that would cause it to fail,
and thus, give the programmer a first-hand experience of the
program not behaving as they expected. A similar approach,
known as surprise-explain-reward, has been applied to pro-
gramming environments with notable benefits [6], [29]. For
example, it has been used to entice end-user programmers
in testing spreadsheets by inputting arbitrary values into the
spreadsheet to see if it “surprises” the programmer with the
result [54]. Seeing the program behave in an unexpected
manner could have a positive effect on the programmer’s
understanding rather than just reading an explanation, and also
encourage the programmer to continue testing the program.
This approach should prove to be an improvement over just
providing textual explanations, such as enhanced compiler
error messages, which have yielded mixed results [2], [7], [12],
[41], [44], [45].

C. Preventing Misconceptions

Once the programmer’s misconception has been identified
and corrected, our proposed code editor will attempt to prevent
the programmer from having similar misconceptions again.
There are three mechanisms that can be utilized to prevent
programmers from having similar misconceptions in the future
about their program’s behavior. First, the editor could generate
test code (i.e., assertions or unit tests) and documentation (i.e.,
code comments). The goal of the test code is to inform the
programmer if and when the program behavior changes, such
that their understanding of the program’s behavior changes
accordingly. For example, an assertion could be inserted that
will cause an immediate error if a variable does not always
fall within a specified range. For more advanced students,
the tools could automatically generate unit tests, a more
sophisticated means of testing than assertions, but are often
not taught in introductory computer science courses. The tools
will also automatically generate code comments to provide

the programmer a reminder of how the code behaves and an
explanation as to why it behaves that way. To avoid causing
additional frustration and cognitive load, the tools will need
to provide features to efficiently hide the inserted test code
and comments, such as a toggle button. A concern is that
inserting too many lines of code or comments could make
navigating the code tedious and difficult, so this will require
further investigation on how to do so efficiently and succinctly.

Second, the editor could monitor which types of issues
the programmer is struggling with (e.g., loops or bitwise
operators) and use it as an opportunity to teach that topic to
the programmer. For example, if multiple misconceptions have
been identified regarding the number of iterations in a loop, the
tool could walk through each piece of a loop with explanations
on the syntax and semantics. If more help is needed, the
tools could provide excerpts from or links to relevant code
documentation, programming tutorials, and examples.

Third, the code editor could provide aggregate feedback
to course instructors on what misconceptions their students
are often facing. To do so, the editor could be configured
to anonymously collect data on misconceptions in a course
setting (e.g., homeworks or in-class activities) and upload
the data to a web server that is accessible by the course
instructor. The course instructor could then view reports of
what programming constructs are students having difficulty
in understanding and adapt the course to provide additional
instruction on the problematic topics.

III. PRELIMINARY RESULTS

We have been investigating our tool concept from a number
of different perspectives. We have implemented a plugin for
Atom that supports annotating potentially problematic code
snippets, presenting a question and allowing the programmer
to enter an answer, and presenting an explanation and inserting
an optional code fix or assertion. Additionally, we have created
a framework for logging interaction data in the code editor that
is submitted to a remote server in a confidential manner, such
that we can later analyze the effectiveness of our technique.

To identify the potentially problematic code snippets, we
first investigated the viability of off-the-shelf code smell detec-
tors and linters (e.g., SonarSource1). However, these tools are
predominately designed for professional software developers.
By examining the rules employed by such tools and showing
them to undergraduate students, we found that the majority of
them are of little to no value to novice programmers and could
actually cause further confusion. Furthermore, these tools do
not report many of the semantic errors that seem prevalent
among novices.

We are exploring the design of code smell detectors that
are specific to mistakes that novices make. While it is
trivial to detect individual mistakes reported by instructors
and researchers (e.g., [1]), this may not generalize to other
programming languages or programming assignments. In an
effort to overcome this limitation, we have combined several

1https://rules.sonarsource.com/



large data sets, including Blackbox [5], Stack Overflow, and
GitHub. Using this data, we are currently training various
classifiers to detect patterns in code that has indicators of being
buggy or not buggy.

Our informal surveys on the usefulness of our inquisitive
code editor have provided us positive feedback. A primary
concern is that students would ignore or be annoyed by the
tool’s questions, but due to the different workflow and mindset
of novices, they seem to be eager for any opportunity to receive
help with their code. Additionally, we asked how students felt
about a tool that would insert code comments or assertions
into their code as they worked, and they responded favorably.
When speaking with instructors for introductory programming
courses, they believe such a tool could greatly benefit students,
so long as the tool does not solve the bugs for them or let the
students become dependent on it.

IV. RELATED WORK

A. Mistakes Novice Programmers Make

Novice programmers make a lot of mistakes in their
code [1], [3], [4], [10], [24], [28], [49]. Although the majority
of the mistakes are syntax errors (e.g., unbalanced parenthe-
ses), these errors are often fixed in a relatively short time [1].
One common approach to aiding students with syntax errors
is for tools to provide enhanced compiler error messages
that are easy to comprehend and may provide suggestions
as to how to address the error. However, studies so far have
had inconsistent or inconclusive results as to how effective
they are in benefiting students [2], [7], [12], [41], [44], [45]
Another approach that is growing in popularity is blocks-based
languages (e.g., Scratch [36] and App Inventor [55]), which
mitigate syntax errors completely by using a drag-and-drop
interface that does not require memorizing syntax, but these
languages have not yet been adopted in industry.

Semantic errors—when the program behaves differently
than expected—are also common [1], [4] and even more
challenging to fix since compilers often do not provide any
warnings about them. In fact, one study found that students
took far longer to fix semantic errors than syntax errors,
if they were fixed at all [1]. The underlying cause of why
novices introduce semantic errors is complex, but may stem
from a lack of conceptual knowledge, inadequate problem
solving strategies, or extraneous cognitive load [46]. Consider
the following snippet of Python code based on a student’s
homework submission:

response = input(‘‘Please enter (y)es or (n)o’’)
while response != ’y’ or response != ’n’:

response = input(‘‘Please enter (y)es or (n)o’’)

From the student’s perspective, this code should work. The
program will ask the user to input ‘y‘ or ‘n‘, and if anything
else is typed in, the program will continue to ask for the correct
input. However, this contains a semantic error since the logical
“or” in the loop condition will cause the loop to iterate forever.

Researchers have proposed other techniques and tools that
may alleviate various errors that novices make. One such

approach is to provide visualizations of how the program
will behave to aid programmers in understanding. A notable
example of such a tool is Python Tutor, which displays
visualizations of the program’s data structures at each step of
the code [16]. Other tools include Omnicode, which displays
a scatterplot matrix of all run-time values for every variable
in the program [30], Theseus, which annotates functions in
the code editor with the number of times it was called
during the current execution [35], and a tool extension that
displays a small graph of how each variable changes over
time during execution [23]. Another approach is to generate
content to help programmers, such as hints [13], [20], [27],
[43], examples [25], [26], [42], tutorials [18], and recom-
mendations [11], [19], [38], [51], [53]. Recently, researchers
have began exploring how to enable users to efficiently tutor
students over the web [15], [17], [52]. These techniques could
all benefit our proposed work in overcoming misconceptions.

B. Asking Questions about Program Behavior

A particularly relevant tool to our proposed research is the
Whyline [31]–[33], which enables programmers to record pro-
gram executions and then ask “why” and “why not” questions
about the program’s behavior. For example, a programmer can
use the tool to click on a specific part of their program’s
interface and ask the question, “why is this button red?”
The Whyline will then provide an answer (i.e., the relevant
code) and allow the programmer to ask follow-up questions,
such as “why did this event not occur?” To provide these
answers, Whyline records an extensive amount of information
from a program’s execution and uses a combination of static
and dynamic program slicing to derive the answers about
the program behavior [32]. In an empirical study, participants
using Whyline were able to fix bugs in half of the time than
those using a traditional debugger [33].

Despite the great benefits that the Whyline provides, there a
number of ways in which it does not solve the misconceptions
that we are striving to overcome for novice programmers.
One potential barrier is that using the Whyline requires the
programmer to have already acknowledged that there is a bug
and to have recorded the executing program while displaying
the buggy behavior. This is insufficient since novices may
never even realize that there is a bug in their code. Addi-
tionally, novices may find it difficult to find a location in
the program that is relevant, then form a question to ask.
Beyond preemptively catching misconceptions, our work also
aims to correct and prevent misconceptions. Although the
Whyline enables the programmer to trace the lines of code that
may be relevant to a bug, it does not provide any additional
explanation that may be needed for a novice to understand.
Moreover, the Whyline does not provide any features that
prevent the programmer from having similar misconceptions
in the future. Even though the Whyline has made tremendous
progress in improving the debugging process, it is clear that
there is still a gap in tools that support novices in overcoming
semantic errors.



C. Tutoring Systems

To provide explanations and feedback about the program
behavior, we will utilize findings from research on tutoring
systems. These systems provide some form of instruction or
feedback to students as if it was an automated teacher. One
such system, PLTutor, provides short lessons along with a code
editor and visualization of the program state [40]. Another
tutoring system is Ludwig [48], which provides students feed-
back on code style and compares the student’s program output
to the instructor’s program output. Furthermore, a number
of programming tools have augmented features of tutoring
systems into code editors, such as providing hints to novices in
open-ended programming tasks [27]. AutoTutor, a well-studied
tutoring system for many subjects other than programming,
has shown great promise in keeping students engaged and
identifying students’ emotions using mixed-initiative dialog in
natural language [8], [14]. These techniques could be essential
for the tool to be used effectively by novice programmers.

V. CONCLUSION

The next major steps in our research towards making this
idea a reality include conducting a laboratory study and a
field study. With a lab study involving our inquisitive code
editor, we can understand how users interact with the questions
and the effectiveness in how it corrects misconceptions in a
controlled environment. To better understand the usefulness of
our tool in a more ecologically valid setting, we will deploy
it to students enrolled in introductory programming courses to
be used while completing their homework assignments. The
logging framework that we developed will provide us data on
what bugs the students have, the changes they make to fix the
bug, how they debug, and how they interact with our tool.

By proposing this initial tool concept and conducting the
research necessary to implement the inquisitive code editor, we
strive to advance knowledge in the areas of software engineer-
ing, human-computer interaction, and computing education in
order to help novice programmers understand what their code
is really doing. With the ever growing need for more people
with computer programming skills, it is of paramount concern
to reduce the barriers that may deter people from obtaining
these skills. Understanding code is an already arduous process
that students go through, thus our work aims to alleviate these
difficulties and to support a diverse population of students in
learning how to program.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grants 1850027 and 2008408.

REFERENCES

[1] A. Altadmri and N. C. Brown, “37 million compilations: Investigating
novice programming mistakes in large-scale student data,” in Proceed-
ings of the 46th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’15. New York, NY, USA: ACM, 2015, pp.
522–527.

[2] B. A. Becker, “An effective approach to enhancing compiler error
messages,” in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE ’16. New York, NY, USA:
ACM, 2016, pp. 126–131.

[3] B. A. Becker, “A new metric to quantify repeated compiler errors for
novice programmers,” in Proceedings of the 2016 ACM Conference on
Innovation and Technology in Computer Science Education, ser. ITiCSE
’16. New York, NY, USA: ACM, 2016, pp. 296–301.

[4] N. C. Brown and A. Altadmri, “Investigating novice programming
mistakes: Educator beliefs vs. student data,” in Proceedings of the Tenth
Annual Conference on International Computing Education Research, ser.
ICER ’14. New York, NY, USA: ACM, 2014, pp. 43–50.

[5] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting, “Blackbox: A
large scale repository of novice programmers’ activity,” in Proceedings
of the 45th ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’14. New York, NY, USA: ACM, 2014, pp. 223–228.

[6] J. Cao, S. D. Fleming, M. Burnett, and C. Scaffidi, “Idea Garden: Situ-
ated support for problem solving by end-user programmers,” Interacting
with Computers, vol. 27, no. 6, pp. 640–660, Nov. 2015.

[7] P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error
messages appears ineffectual,” in Proceedings of the 2014 Conference
on Innovation &#38; Technology in Computer Science Education, ser.
ITiCSE ’14. New York, NY, USA: ACM, 2014, pp. 273–278.

[8] S. D’mello and A. Graesser, “Autotutor and affective autotutor:
Learning by talking with cognitively and emotionally intelligent
computers that talk back,” ACM Trans. Interact. Intell. Syst.,
vol. 2, no. 4, pp. 23:1–23:39, Jan. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2395123.2395128

[9] I. Drosos, P. J. Guo, and C. Parnin, “Happyface: Identifying and
predicting frustrating obstacles for learning programming at scale,”
in 2017 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Oct 2017, pp. 171–179.

[10] A. Ebrahimi, “Novice programmer errors: Language constructs and
plan composition,” International Journal of Human Computer Studies,
vol. 41, no. 4, pp. 457–480, 1994.

[11] E. Fast, D. Steffee, L. Wang, J. R. Brandt, and M. S. Bernstein, “Emer-
gent, crowd-scale programming practice in the ide,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’14. New York, NY, USA: ACM, 2014, pp. 2491–2500.

[12] T. Flowers, J. Jackson, and C. Carver, “Empowering students and
building confidence in novice programmers through gauntlet,” in 34th
Annual Frontiers in Education, 2004. FIE 2004.(FIE), vol. 00, 10 2004,
pp. T3H/10–T3H/13 Vol. 1.

[13] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen, “Codehint:
Dynamic and interactive synthesis of code snippets,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 653–663.

[14] A. C. Graesser, P. Chipman, B. C. Haynes, and A. Olney, “Autotutor:
an intelligent tutoring system with mixed-initiative dialogue,” IEEE
Transactions on Education, vol. 48, no. 4, pp. 612–618, Nov 2005.

[15] P. J. Guo, J. White, and R. Zanelatto, “Codechella: Multi-user program
visualizations for real-time tutoring and collaborative learning,” in 2015
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Oct 2015, pp. 79–87.

[16] P. J. Guo, “Online python tutor: Embeddable web-based program visu-
alization for cs education,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13. New
York, NY, USA: ACM, 2013, pp. 579–584.

[17] P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for
computer programming,” in Proceedings of the 28th Annual ACM
Symposium on User Interface Software &#38; Technology, ser. UIST
’15. New York, NY, USA: ACM, 2015, pp. 599–608.

[18] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher, “Automatically gen-
erating tutorials to enable middle school children to learn programming
independently,” in Proceedings of the 12th International Conference on
Interaction Design and Children, ser. IDC ’13. New York, NY, USA:
ACM, 2013, pp. 11–19.

[19] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: Suggesting solutions to error messages,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’10. New York, NY, USA: ACM, 2010, pp. 1019–
1028. [Online]. Available: http://doi.acm.org/10.1145/1753326.1753478

[20] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann, “Tutorons: Gen-
erating context-relevant, on-demand explanations and demonstrations



of online code,” in 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), Oct 2015, pp. 3–12.

[21] A. Z. Henley and S. D. Fleming, “Yestercode: Improving code-change
support in visual dataflow programming environments,” in Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing, ser.
VL/HCC ’16, 2016, pp. 106–114.

[22] A. Z. Henley and S. D. Fleming, “CodeDeviant: Helping programmers
detect edits that accidentally alter program behavior,” in Proc. IEEE
Symposium on Visual Languages and Human-Centric Computing, ser.
VL/HCC ’18, 2018.

[23] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with
in situ visualizations to aid program understanding,” in Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’18. New York, NY, USA: ACM, 2018, pp. 532:1–532:12.
[Online]. Available: http://doi.acm.org/10.1145/3173574.3174106

[24] M. Hristova, A. Misra, M. Rutter, and R. Mercuri, “Identifying and
correcting java programming errors for introductory computer science
students,” in Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education, ser. SIGCSE ’03. New York, NY, USA:
ACM, 2003, pp. 153–156.

[25] M. Ichinco, W. Hnin, and C. Kelleher, “Suggesting examples to novice
programmers in an open-ended context with the example guru,” in 2016
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), Sept 2016, pp. 230–231.

[26] M. Ichinco, W. Y. Hnin, and C. L. Kelleher, “Suggesting api usage to
novice programmers with the example guru,” in Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems, ser. CHI ’17.
New York, NY, USA: ACM, 2017, pp. 1105–1117.

[27] M. Ichinco and C. Kelleher, “Semi-automatic suggestion generation for
young novice programmers in an open-ended context,” in Proceedings
of the 17th ACM Conference on Interaction Design and Children, ser.
IDC ’18. New York, NY, USA: ACM, 2018, pp. 405–412.

[28] J. Jackson, M. Cobb, and C. Carver, “Identifying top java errors
for novice programmers,” in Proceedings Frontiers in Education 35th
Annual Conference, Oct 2005, pp. T4C–T4C.

[29] W. Jernigan, A. Horvath, M. Lee, M. Burnett, T. Cuilty, S. Kuttal,
A. Peters, I. Kwan, F. Bahmani, and A. Ko, “A principled evaluation
for a principled Idea Garden,” in Proc. 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC ’15), Oct. 2015,
pp. 235–243.

[30] H. Kang and P. J. Guo, “Omnicode: A novice-oriented live programming
environment with always-on run-time value visualizations,” in Proceed-
ings of the 30th Annual ACM Symposium on User Interface Software
and Technology, ser. UIST ’17. New York, NY, USA: ACM, 2017, pp.
737–745.

[31] A. J. Ko and B. A. Myers, “Designing the whyline: A debugging
interface for asking questions about program behavior,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’04. New York, NY, USA: ACM, 2004, pp. 151–158.

[32] A. J. Ko and B. A. Myers, “Debugging reinvented: Asking and
answering why and why not questions about program behavior,”
in Proceedings of the 30th International Conference on Software
Engineering, ser. ICSE ’08. New York, NY, USA: ACM, 2008, pp. 301–
310. [Online]. Available: http://doi.acm.org/10.1145/1368088.1368130

[33] A. J. Ko and B. A. Myers, “Finding causes of program output with
the java whyline,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’09. New York, NY, USA:
ACM, 2009, pp. 1569–1578.

[34] Y. B.-D. Kolikant, “Students’ alternative standards for correctness,”
in Proceedings of the First International Workshop on Computing
Education Research, ser. ICER ’05. New York, NY, USA: ACM, 2005,
pp. 37–43.

[35] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’14. New York, NY, USA: ACM, 2014, pp. 2481–2490.

[36] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond, “The
scratch programming language and environment,” Trans. Comput. Educ.,
vol. 10, no. 4, pp. 16:1–16:15, Nov. 2010.

[37] D. C. McFarlane, “Comparison of four primary methods for coordinating
the interruption of people in human-computer interaction,” Human-
Computer Interaction, vol. 17, no. 1, pp. 63–139, 2002.

[38] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann, “Crowdsourcing
suggestions to programming problems for dynamic web development

languages,” in CHI ’11 Extended Abstracts on Human Factors in
Computing Systems, ser. CHI EA ’11. New York, NY, USA: ACM,
2011, pp. 1525–1530.

[39] S. C. Müller and T. Fritz, “Stuck and frustrated or in flow and happy:
Sensing developers’ emotions and progress,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, May
2015, pp. 688–699.

[40] G. L. Nelson, B. Xie, and A. J. Ko, “Comprehension first: Evaluating
a novel pedagogy and tutoring system for program tracing in cs1,” in
Proceedings of the 2017 ACM Conference on International Computing
Education Research, ser. ICER ’17. New York, NY, USA: ACM, 2017,
pp. 2–11.

[41] M.-H. Nienaltowski, M. Pedroni, and B. Meyer, “Compiler error mes-
sages: What can help novices?” in Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, ser. SIGCSE ’08.
New York, NY, USA: ACM, 2008, pp. 168–172.

[42] S. Oney and J. Brandt, “Codelets: Linking interactive documentation and
example code in the editor,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’12. New York,
NY, USA: ACM, 2012, pp. 2697–2706.

[43] B. Peddycord III, A. Hicks, and T. Barnes, “Generating hints for
programming problems using intermediate output,” in Educational Data
Mining 2014. Citeseer, 2014.

[44] R. S. Pettit, J. Homer, and R. Gee, “Do enhanced compiler error mes-
sages help students?: Results inconclusive.” in Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education,
ser. SIGCSE ’17. New York, NY, USA: ACM, 2017, pp. 465–470.

[45] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone,
and M. Cohen, “On novices’ interaction with compiler error messages: A
human factors approach,” in Proceedings of the 2017 ACM Conference
on International Computing Education Research, ser. ICER ’17. New
York, NY, USA: ACM, 2017, pp. 74–82.

[46] Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties
in introductory programming: A literature review,” ACM Trans. Comput.
Educ., vol. 18, no. 1, pp. 1:1–1:24, Oct. 2017.

[47] M. M. T. Rodrigo and R. S. Baker, “Coarse-grained detection of student
frustration in an introductory programming course,” in Proceedings
of the fifth international workshop on Computing education research
workshop. ACM, 2009, pp. 75–80.

[48] S. C. Shaffer, “Ludwig: An online programming tutoring and assessment
system,” SIGCSE Bull., vol. 37, no. 2, pp. 56–60, Jun. 2005.

[49] J. C. Spohrer and E. Soloway, “Novice mistakes: Are the folk wisdoms
correct?” Commun. ACM, vol. 29, no. 7, pp. 624–632, Jul. 1986.
[Online]. Available: http://doi.acm.org/10.1145/6138.6145

[50] I. Stamouli and M. Huggard, “Object oriented programming and
program correctness: The students’ perspective,” in Proceedings of the
Second International Workshop on Computing Education Research, ser.
ICER ’06. New York, NY, USA: ACM, 2006, pp. 109–118. [Online].
Available: http://doi.acm.org/10.1145/1151588.1151605

[51] R. Suzuki, G. Soares, A. Head, E. Glassman, R. Reis, M. Mongiovi,
L. D’Antoni, and B. Hartmann, “Tracediff: Debugging unexpected code
behavior using trace divergences,” in 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct 2017, pp.
107–115.

[52] J. Warner and P. J. Guo, “Codepilot: Scaffolding end-to-end collaborative
software development for novice programmers,” in Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’17. New York, NY, USA: ACM, 2017, pp. 1136–1141.

[53] C. Watson, F. W. Li, and J. L. Godwin, “Bluefix: using crowd-sourced
feedback to support programming students in error diagnosis and repair,”
in International Conference on Web-Based Learning. Springer, 2012,
pp. 228–239.

[54] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook,
M. Durham, and G. Rothermel, “Harnessing curiosity to increase
correctness in end-user programming,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’03.
New York, NY, USA: ACM, 2003, pp. 305–312. [Online]. Available:
http://doi.acm.org/10.1145/642611.642665

[55] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor. ”
O’Reilly Media, Inc.”, 2011.


