
CAREER: Inquisitive Programming Environments as Learning
Environments for Novices and Experts

1 Overview, Significance, and Impact

Programming is a cognitively demanding task that requires continuous learning. But it is not just
novices that are learning, since professional programmers must learn unfamiliar software projects,
new libraries and frameworks, and even understand the design decisions and intent of code that
other programmers wrote. This is particularly challenging since much of the information needed
to complete programming tasks never gets written or shared. In fact, numerous studies have
found that programmers spend a tremendous amount of time foraging for information and they
often never find what they are looking for [69, 92, 93, 123]. Alleviating these barriers involved in
learning during programming tasks is of paramount concern to support a diverse population of
novices and experts to work in computing fields.

My overarching research plan is to understand how inquisitive feedback loops can facilitate
learning during software development tasks for novices and experts. An inquisitive feedback
loop is a system that elicits information from the programmer that is often locked away in their
mind or someone else’s mind, and then uses that information to provide more effective feed-
back. One motivating application of an inquisitive feedback loop is a system that detects complex
code and entices the programmer to provide a structured explanation of the code snippet. Self-
explanation has shown to be an an effective means of learning, especially in the context of learning
to program, and the elicited explanation could be used to automate tedious programming tasks
(e.g., writing documentation).

Toward this goal, I have three specific contexts I will design tools with inquisitive feedback
loops for:

• (1) Supporting novice programmers in learning to effectively understand and explain how
their programs work with CodeInquisitor.

• (2) Supporting expert programmers in learning, documenting, and sharing design decisions
about code with CodeWitness.

• (3) Supporting programmers in the transition from novice to expert through onboarding
with DevCourier.

By studying these three important contexts that pose considerable challenges to programmers, I
strive to understand and validate the usefulness of inquisitive feedback loops through triangula-
tion. Each context has unique characteristics that will come together to form a body of evidence
on the effectiveness of inquisitive feedback loops.

I aim to advance knowledge in the areas of human-computer interaction, software engineering,
and computing education to facilitate learning through self-explanation and revolutionize the ways
in which programming tools can assist people during software development. In fact, I first vali-
dated an inquisitive feedback loop in my NSF CRII work for helping novices overcome miscon-
ceptions about their code. Our results were so promising that I received overwhelming support
and feedback on our paper published [43] at the ICSE’21 Education track to continue this line of
research. This proposal’s research plan and education plan are tightly integrated through my in-
dustry collaborations, courses, and open source software projects. Therefore, I would like to take
this promising approach and apply it to broader and more complex contexts during my research
and education career.

1

Austin Henley - 2021

2 PI Qualifications

My prior research can be broadly categorized as (1) studies on programmer’s information seeking
behavior [19, 92, 93, 94, 107] and (2) programming tools that provide information more effec-
tively [1, 43, 44, 45, 47, 48, 49, 103]. In fact, I have conducted numerous qualitative studies to
understand the barriers that programmers face, and then designed, implemented, and evaluated
8 programming tools in the last 7 years that are aimed at addressing the barriers we identified.
Through my industry collaborations (e.g., with

) and academic collaborations (e.g., within and outside
University of Tennessee), I am able to study programmers in both professional and educational
settings. See the 8 letters of collaboration included with this proposal.

For example, we used a mixed-methods approach to study collaborative code reviews at Mi-
crosoft that involved programmers discussing and documenting design decisions about code
changes. We designed CFar [48] to facilitate these design discussions by automatically display-
ing feedback in a way that includes the entire team. To evaluate our design, we conducted a small
lab study, deployed the tool to 98 professional programmers for 15 weeks to collect log data, and
surveyed 33 programmers to better understand their usage and opinion of the tool. Moving for-
ward, I will use my experience, skills, and network to effectively conduct the research proposed
to transform feedback loops for programmers.

3 Background & Related Work

There are many studies on the information needs of programmers and tools to support those infor-
mation needs. However, much of the information may not exist outside of another programmer’s
mind (e.g., a design decision another programmer made [65, 77]) or the programmer may not yet
realize they need information until going down the wrong path (e.g., a code change has cascad-
ing implications [65, 92]). Through an inquisitive feedback loop, programmers could benefit from
self-explanation as a means of learning, documenting, and sharing knowledge.

3.1 Programmers’ Information Needs

Developers need a variety of information to complete their development tasks. In fact, researchers
have performed numerous empirical studies to better understand developers’ dynamic informa-
tion needs during development tasks (e.g., [65, 74, 75, 78, 95, 104, 108]). One notable field study
found that programmers spent 58% of their time understanding code [123]. Another notable study
identified 44 kinds of questions that developers ask during development tasks, such as “Why isn’t
control reaching this point in the code?” [104]. Similarly, researchers observed developers spending a
substantial amount of their time trying to answer reachability questions, which are those concerned
with about the paths in code or the relationships between code modules [74].

Despite programmers spending 35–50% of their time seeking information in code and doc-
umentation [69, 95], they are often unsuccessful in satisfying their information needs. In fact,
developers often investigate irrelevant code in an attempt to find the code that will yield the
information they need [69]. One cause for this may be that tools do not support developers’ in-
formation needs, given that an analysis on questions that developers ask found that there is often
a mismatch between the developer’s question and the answers that tools provide [104]. More-
over, a survey of 179 professional developers revealed 94 distinct questions that they believe are
hard to answer even with tools [75]. These difficulties to find information matches the results of

2

our recent study, which found that 50% of navigations yielded less information than developers
expected, and 40% required more effort than the developer predicted [93]. Another key reason
for the difficulty finding information is that it is often not written anywhere and requires asking
another programmer [65, 77].

3.2 Tools for Satisfying Information Needs

To address the inefficiencies of development tools, researchers have designed tools for answering
developers questions more efficiently. A popular approach is to integrate recommendation sys-
tems into the development environment (e.g., Mylar [64], Hipikat [116], Stacksplorer [62], the PFIS
recommender [91], and Prodet [4]). In this context, a recommendation is any information that is
“estimated to be valuable for a software engineering task” [99]. Such recommenders have utilized
a variety of factors, often multiple, to produce recommendations of code. Notable factors include
code structure [4, 50, 52, 62, 72, 76, 119], natural language [50, 124], navigation history [64, 91, 106],
code edits [64], collaborative information [23, 106], and project documents [116].

A particularly relevant tool to our proposed research is the Whyline [66, 67, 68], which enables
programmers to record program executions and then ask “why” and “why not” questions about
the program’s behavior. For example, a programmer can use the tool to click on a specific part of
their program’s interface and ask the question, “why is this button red?” The Whyline will then
provide an answer (i.e., the relevant code) and allow the programmer to ask follow-up questions,
such as “why did this event not occur?” To provide these answers, Whyline records an extensive
amount of information from a program’s execution and uses a combination of static and dynamic
program slicing to derive the answers about the program behavior [67]. In an empirical study,
participants using Whyline were able to fix bugs in half of the time than those using a traditional
debugger [68].

Although Whyline is effective for debugging, it requires the programmer to have already iden-
tified a problem and to be able to select an appropriate question. In contrast, our proposed work
on an inquisitive feedback loop is designed to support novices and experts prior to realizing there
is a problem. For example, novices often have a different definition of program correctness [70]
and they struggle with misconceptions even when their program does work as expected [63], so
they would not be able to use the Whyline in such situations. Additionally, an inquisitive feed-
back loop can be used to assist expert programmers in tedious tasks that may be overlooked for
extended periods of time (e.g., writing documentation or test code).

3.3 Self-Explanation

Self-explanation is the process of explaining a concept to one’s self [20]. Studies have found
that students that perform self-explanation in programming courses make fewer coding mistakes,
have a better understanding of their programming solutions, and perform better on tests [11, 96,
117]. Rubber duck debugging is a common strategy among programmers that involves explaining
your code to an inanimate objects so that “you must explicitly state things that you may take for
granted when going through the code yourself. By having to verbalize some of the assumptions,
you may suddenly gain new insights into the problem” [113]. Moreover, there is evidence that
explanations can also be useful in group settings [12].

However, studies in other domains have found that it is rare for people to perform self-
explanation without being prompted [20, 41]. For example, a seminal study on problem-solving
strategies found that only 10% of participants self-explained on their own [20]. When partici-
pants are prompted to self-explain, they show positive learning outcomes and achieve similar

3

Figure 1: Overview of our proposed research to understand how inquisitive programming envi-
ronments can be used as learning environments.

performance as those who self-explained without prompting [11, 21, 41]. These promising result
motivates the need for further study on inquisitive feedback loops as a means of prompting novice
and expert programmers to self-explain.

4 Proposed Research

Towards studying the effectiveness of inquisitive feedback loops in aiding programmers, I will de-
sign, implement, and evaluate three tools that support different information needs. In particular,
the three contexts are: (1) novice programmers learning to understand and explain how their pro-
grams work, (2) expert programmers learning, documenting, and sharing design decisions about
code, and (3) programmers transitioning from novice to expert during onboarding. By investigat-
ing these activities, we can study the effect on novices versus experts, individuals versus teams,
and programming task (i.e., program understanding, documentation, and onboarding).

An overview of the proposed research is shown in Fig. 1. The inquisitive feedback loop is en-
tirely dependent on the context, though the common elements include when to elicit information,
what information to elicit, and how to use the information. We will then use a user-centered de-
sign approach to design and implement our tools, and then use mixed methods to evaluate them.
The remainder of this section is organized into the three aims that strive to understand how in-
quisitive feedback loops can promote learning during software development tasks for novices
and experts. Because of the overlapping nature of the three aims, including a shared codebase for
implementing the tools, I believe the proposed research is feasible in a 5-year scope.

4.1 Aim #1: Support Novices in Program Understanding with CodeInquisitor

The number of people interested in learning computer programming has increased dramatically
in recent years. However, novice programmers face numerous barriers while attempting to learn
how to code that may deter them from pursuing a computer science degree or career in software
development. To address the barriers that novices face while learning to code, I propose to build
CodeInquisitor based on my NSF CRII research, a tool for eliciting explanations from novices
about how they believe their program will behave while they are actively engaged in coding tasks.

4

4.1.1 Related work

Novice programmers make a lot of mistakes in their code [2, 9, 14, 28, 53, 57, 109]. Although the
majority of the mistakes are syntax errors (e.g., unbalanced parentheses), these errors are often
fixed quickly [2]. When the program behaves differently than expected, known as a semantic
error, is also common [2, 14] but more challenging to fix since compilers often do not provide
any warnings about them. A key reason that novice programmers have this issue is they often
have a different definition of program correctness than professional programmers [70]. One study
found that many students believe a program is correct when there are no compiler errors, but
the students indicated little regard to the program’s behavior [110]. Furthermore, students are
often unable to accurately explain their own code [63, 79]. Even if the code produces the correct
output, some students were still unable to explain the code or indicated a misconception about
the behavior [63].

Researchers have proposed other techniques and tools that may alleviate various errors that
novices make. One common approach to aiding students with syntax errors is for tools to provide
enhanced compiler error messages that are easy to comprehend and may provide suggestions as to
how to address the error. However, studies have had inconsistent or inconclusive results as to how
effective they are in benefiting students [8, 24, 34, 86, 90, 98] Another technique is to provide visu-
alizations of how the program will behave to aid programmers in understanding, such as Python
Tutor, which displays visualizations of the program’s data structures at each step of the code [36].
Other tools include Omnicode, which displays a scatterplot matrix of all run-time values for every
variable in the program [61], Theseus, which annotates functions in the code editor with the num-
ber of times it was called during the current execution [81], and a tool extension that displays a
small graph of how each variable changes over time during execution [51]. Researchers have also
proposed tools that generate content to help programmers, such as hints [35, 42, 56, 89], exam-
ples [54, 55, 87], tutorials [39], and recommendations [32, 40, 56, 85, 112, 120]. Recently, researchers
have began exploring how to enable users to efficiently tutor students over the web [37, 38, 118].
All of these approaches are synergistic with the proposed inquisitive feedback loop.

4.1.2 Preliminary work

My NSF CRII work led to an inquisitive code editor for addressing novice programmers’ miscon-
ceptions of program behavior [43]. The inquisitive editor (see Fig. 2) follows a three step process:
first, it identifies misconceptions by identifying potentially problematic code and prompting the
programmer with specific multiple-choice or number-entry questions about the program’s behav-
ior. Second, it attempts to correct the misconceptions by providing an explanation based on the
program’s actual behavior. Third, it can prevent further misconceptions by inserting test code
(e.g., assertions) and code comments.

Thus far we have prototyped the concept as a code editor plugin and gathered preliminary
feedback from students and instructors. To identify potential misconceptions, we first investigated
the viability of off-the-shelf code smell detectors (e.g., SonarSource). However, these tools are
predominately designed for professional software developers. By examining the rules employed
by such tools and showing them to undergraduate students, we found that the majority of them
are of little to no value to novice programmers and could actually cause further confusion. In
contrast, we trained machine learning models to identify code smells that are specific to mistakes
that novices make. While it is trivial to detect individual mistakes reported by instructors and
researchers (e.g., [2]), these may not generalize to other programming languages or programming

5

assignments. In an effort to overcome this limitation, we have combined several large data sets,
including Blackbox [15], Stack Overflow, and GitHub.

Figure 2: The Atom code editor with
a preliminary prototype of our tool ex-
tension for identifying misconceptions.
Code patterns that correlate with mis-
conceptions are automatically annotated
with a question mark (top). Clicking the
annotation displays a question for the
programmer to answer about how they
think the program will behave (bottom).

From our initial results, we have found that the
primary benefits come from the novice answering
questions about their code and explaining the code
to themselves. Originally, we were concerned with
identifying and fixing specific code errors. How-
ever, by applying the inquisitive feedback loop
more generally, we could support students in bet-
ter understanding their code and also train them to
do so more effectively.

4.1.3 Research plan

CodeInquisitor will extend my preliminary work
by generalizing the inquisitive feedback loop in
the context of novice programmers attempting to
understand their code. In particular, we will ex-
pand the work beyond identifying and fixing spe-
cific misconceptions from a limited set of known
problems that novices have. Instead, CodeInquisi-
tor will elicit general explanations about code as a
means of correcting high-level issues in their un-
derstanding. Interestingly, Lehtinen et al. recently
discussed the potential benefits of automatically
asking students about their code [80], which en-
courages the need of such work.

When to elicit explanations? A fundamental
aspect of this work is knowing when to elicit an ex-
planation that will be most beneficial to the novice
while minimizing disruption. For example, asking
for an explanation early in their coding session will
yield unhelpful explanations (i.e., little to explain
or not enough understanding yet to articulate an
explanation) and asking too late means the learning opportunity has passed (i.e., they have al-
ready figured it out or given up). Additionally, there is the dimension of frequency of prompting.
In our prior work on overcoming misconceptions, we prompted the novice with a specific code
question whenever they wrote a line of code that was flagged by our code smell detector with
a maximum of one prompt per two minutes. In that context, our configuration was adequate,
likely because the novices believed it was the compiler helping them solve bugs and the compiler
already gives frequent feedback in the form of errors.

We have identified a number of indicators that can be calibrated to trigger the elicitation event,
including running the program, adding a breakpoint, or completing a block of code with sufficient
complexity. In fact, our preliminary work found that repeatedly running the program or adding
a breakpoint is indicative of a misconception. In contrast, passing a unit test (often provided
by instructors) that was previously failing indicates a breakthrough. Both of these events may
be useful times to elicit an explanation since students struggle with explaining their code, even
when it appears to run correctly. Eliciting explanations that are not specific to a bug To entice

6

the novices to provide the explanations using CodeInquisitor and not ignore them, we will use
surprise-explain-reward [101]. This is a technique that has been used to entice end-users to test
software in a variety of contexts, such as spreadsheets, by provoking their curiosity and then
rewarding them [17, 58, 122]. Additionally, we will use our classroom study to compare the dif-
ferent indicators and parameters (e.g., how frequently to elicit explanations), explained further in
the Evaluation Plan.

What information makes for a good explanation? It is an open question what makes for a
good explanation to help novices understand their code. In our prior work, we asked specific
questions about code (i.e., “how many times will this loop iterate?”), which were able to aid in
overcoming misconceptions, but only for a set of predefined issues. With CodeInquisitor we aim
to assist them in understanding their code from a higher-level. However, it will not be adequate to
simply give the novice a textbox and ask them to explain their code in natural language. We will
investigate the novel idea of structured self-explanations that provide scaffolding to assist the novice
in providing useful explanations with necessary details for CodeInquisitor to generate feedback.
Our method to operationalize these structured self-explanations is by (1) displaying a set of auto-
matically generated short explanations that (2) must be drag-and-dropped into the correct order
by the novice and (3) allow some minor edits about key program behaviors. This idea is based
heavily on Parsons problems for programming tests [88, 27], which involve selecting and rearrang-
ing a set of predefined code snippets to form a solution and have been shown to have a number
of benefits over asking students to write code from scratch [25, 31, 30, 29, 84]. In fact, we can use
similar techniques (i.e., program analysis and a database of pre-identified issues based on student
data) to generate these structured prompts as we did for generating the code questions [43].

How can explanations be used to generate effective feedback? The elicited explanation can
be used by CodeInquisitor to provide feedback to the novice that otherwise would not be possible.
In our prior work, we used the answers to the specific code questions to generate short explana-
tions as why they were correct or incorrect as well as inserting code documentation and assertions.
Although the short explanation was beneficial to the students, the generated code documentation
and assertions were not. They were either ignored, removed, or in one case, caused the student
considerable confusion as to why the generated assertion was failing later. To overcome this short
coming, CodeInquisitor will not generate any code or documentation for the novices, but instead
act as an interactive debugging assistant. When a student provides an explanation that CodeIn-
quisitor can detect is incorrect (using program analysis similar to our prior tool [43]), it will instruct
the novice how to test if their explanation is correct. Afterwards, CodeInquisitor will display the
novice’s provided explanation and ask them to modify it until it is correct, allowing for multiple
rounds of feedback.

4.1.4 Potential risks

• Enticing programmers to use our tools, rather than to ignore them, is a primary concern. To
overcome this, we will incorporate techniques such as surprise-explain-reward [101].

• Identifying indicators of when to elicit explanations is essential for our tools to be beneficial.
We will analyze several public sources of bugs and errors that novices introduce (e.g., Black-
box [15]) to identify correlations between problematic outcomes and debugging behaviors.
Additionally, we will deploy the tool in classroom situations to calibrate the parameters.

• Overwhelming the programmer with information could greatly decrease the usefulness of
our tools, so we will employ a user-centered design approach to frequently get feedback on
our tool designs from programmers.

7

• Providing the right scaffolding for structured explanations is an open-ended problem. We
will first investigate structured explanations in a laboratory setting to isolate the necessary
information before integrating it into CodeInquisitor.

• Measuring the effect of such tools is complex and is difficult to discern. By using mixed
methods we will triangulate our findings with quantitative and qualitative data from labo-
ratory studies and classroom studies.

4.2 Aim #2: Support Experts in Documenting Decisions with CodeWitness

To “transcend the individual human mind” [3] remains a challenging and relevant problem, par-
ticularly in collaborative software engineering. A considerable amount of information about soft-
ware design is never documented, likely due to the significant amount of effort required to docu-
ment, organize, and maintain the information. Toward addressing the tedious and time consum-
ing task of documenting design decisions about code, I propose to build CodeWitness, a tool for
eliciting design decision rationale from experts while they are actively engaged in coding tasks.

4.2.1 Related work

Programmers often need information about code that is not written and thus requires seeking out
another person who may have the answer [65, 77]. In one study, 66% of the participants agreed
that understanding the rationale behind a piece of code is a serious problem and 39% said that
finding the right person to talk to about a piece of code is a challenge they face [77]. The same
study found that even when design documents do exist, programmers found them too difficult to
use. Similarly, another study found that programmers often ask “why was this code implemented
this way”, but are often unable to find an answer [65].

4.2.2 Preliminary work

To facilitate discussion and documentation about design decisions in code, we designed CFar [48],
a tool that automatically inserts feedback into code reviews and tracks them over time. Shown in
Fig. 3, CFar’s goal was to give programmers a starting point for discussions about code, since
reviewers often fixate on low-level issues while ignoring high-level design problems and bugs [6,
102]. This is likely due to substantial time that code reviews take [5, 71, 77], despite less time
spent on code reviews has been shown to correlate with more bugs [33, 83, 114]. Our studies on
the effectiveness of CFar found that it increased communication, productivity, and code quality.
Towards studying this problem from another perspective, we designed CodeDeviant [46], a tool
that automatically records ad hoc tests (i.e., running the problem and manually testing inputs)
that can be shared and rerun with teammates. Our initial evaluations of CodeDeviant found that
programmers discovered significantly more bugs and fixed them in less time.

4.2.3 Research plan

The research on designing CodeWitness is divided into three steps: (1) identify events when de-
sign decisions are being made, (2) design a technique to elicit design decision rationale while
minimizing disruptions, and (3) design a technique to document and share the rationale.

Identifying when design decisions are made in code. The first step in this project is to empir-
ically study when design decisions are being made in the context of code. Since it is not possible to
be a fly on the wall in the developers’ offices, we will instead use their code changes as indicators

8

of design decisions. For example, a major refactoring may indicate that new design decisions have
been made. As such, we will utilize existing techniques for large code-change detection (e.g., for
refactoring code [115]) and code idiom detection (e.g., [60]). Once we have obtained a dataset of
real-world instances of potential indicators, we can survey the developers to understand if and
what decisions were actually made when they made the code changes.

Figure 3: Our CFar tool integrated into Mi-
crosoft’s CodeFlow code reviewing tool. CFar
automatically inserts feedback into code reviews
to initiate design discussions within teams.

Eliciting design decision rationale.
Once we have validated the indicators
that a design decision has been made, we
can design CodeWitness to automatically
detect the indicators and elicit more infor-
mation about the design decision from the
developer. This would entail annotating
the relevant code in the code editor, and
then when a developer clicks the annota-
tion, prompting them with a question that
asks for more information about the de-
sign decision. The set of possible ques-
tions would be generated using program
analyzes so that it is specific to the con-
text and reduces the amount of effort for
the developer to answer. These annota-
tions are based on negotiable interruptions,
notifications that allow the user to attend
to when they choose, and studies have found them to be preferred in long, continuous tasks [82].

Automatically generate and share documentation. Using the answer from the developer, the
tool will automatically generate and share documentation given the specific code context. We
will investigate how to effectively transform a developer’s answer to the generated questions into
documentation. The next feature of the tool will share the documentation in the relevant forms
(i.e., comments in code, discussions in code reviews, and standalone design documents). It will
do so by storing the comments in a standalone database and use a web service that integrates with
other services, such as the code reviewing tool and code repository (as we did with CFar [48]). This
integration is essential since programmers have already been shown to have difficulty in searching
their documentation and instead will go ask someone [77]. To achieve a successful integration in
our prior work, we deployed the tool to a small set of teams at Microsoft and used mixed-methods
to rapidly iterate on the tool design before deploying to a larger population [48].

4.2.4 Potential risks

• The phrasing of questions is of paramount concern in order to elicit explanations that will
serve as useful documentation to others. This open-ended research question will likely yield
new knowledge to the research community that we will study by asking programmers from
both perspectives (i.e., writing and reading explanations).

• Our prior work found that integrating into programmers’ workflow is vital for adoption. We
will seek feedback from our industry collaborators (see letters of collaboration) to iteratively
solve these integration issues.

• To minimize disruptions to these programmers, we will use negotiable interruptions which
have been found to be suitable in such contexts.

9

4.3 Aim #3: Support Q&A during Onboarding with DevCourier

Onboarding is the process that a programmer goes through to join a new software team or project.
It is an important yet challenging time for organizations, since it is costly and time consuming for
everyone involved [22, 73, 111]. In fact, one study found that programmers are not productive
for the first several months of joining [105], and another found that programmers need several
years to be fluent in a software project [125]. Toward addressing the barriers faced by new hires
and teams during hiring, I propose to build DevCourier, a tool that semi-automatically records
questions and elicits answers to technical questions.

4.3.1 Related work

The challenges of onboarding have been addressed with mentorship programs, pair program-
ming, organized processes, and software solutions. Mentorship programs [7, 59]. An organized
onboarding process [13, 73, 100]. Pair programming [10, 121]. Systems such as bots and collab-
orative agents have recently been applied to software development teams [26] as well as other
onboarding contexts [16, 18]. Although each of these solutions are beneficial, the problem remains
of getting information from an experienced team member to the new member efficiently.

4.3.2 Preliminary work

Figure 4: Synectic provides a canvas-
based environment for arranging cards
of information that can be linked to rel-
evant code. The annotations are aimed
to assist in onboarding programmers to
a project.

We studied the effect of annotations on code writ-
ten by an expert for the use of onboarding new pro-
grammers to a project through Synectic [1], shown
in Fig. 4. To validate annotations in Synectic, we
conducted a user study comparing newcomer task
support for information foraging and comprehen-
sion within a traditional programming environ-
ment (Eclipse) and our canvas-based tool. The re-
sults showed that providing the right information at
the right place and time helped newcomers answer
comprehension questions with significantly more
accuracy and in less time.

4.3.3 Research plan

The research on designing DevCourier is divided
into three steps: (1) investigate techniques for
recording questions that new hires have, (2) effi-
ciently elicit answers from experts automatically,
and (3) archive the resulting Q&A where it can be
used as a team resource in the future.

Record questions from new hires. DevCourier
will attempt to capture questions that new hires
have, even if they normally would not ask the ques-
tion to another personThis is of interest since it is
indicative of a team or project’s lack of documentation. DevCourier will be made up of three
components: a Google Chrome plugin, a Slack plugin, and a VS Code plugin that will use the

10

new hire’s behavior to know when they are seeking information. Based on our information for-
aging research, we were successful in predicting when programmers need additional informa-
tion [92, 94, 107]. We will use similar techniques to know when a new hire needs information, but
is not successful in finding it. Using their search behavior, we will generate a customized question
that a Slack bot poses to the new hire to elicit what information they are looking for.

Elicit answers from experts. Once a question has been posed to the CodeWitness Slack bot, it
can try to solicit an answer from a relevant team member in a non-disruptive fashion. For example,
CodeWitness can forward the question and contextual information, such as where the new hire
looked for the answer, to the first set of team members that appear to be active in Slack (i.e., they
will not be interrupted while outside of Slack). Their response and any artifacts (e.g., links) will
automatically be logged by CodeWitness and returned to the new hire. CodeWitness will then
monitor the interactions between these two users for a period of time to log any follow-up or
clarification questions on the same topic.

Archive and share the Q&A. Once the question has been answered, CodeWitness will auto-
matically archive the question and all relevant details in a shareable form that integrates into the
team’s existing tooling. With this documentation, future team members that have similar ques-
tions can find the answer in the documentation. Furthermore, CodeWitness will remember every
question and answer it has facilitated and be able to reference them automatically when it detects
similar questions. Bots are used extensively throughout the software development process, and
we had success in using a bot to facilitate code reviewing and design discussions at Microsoft [48].

4.3.4 Potential risks

• Capturing questions that programmers have is a complex problem-space, but we have been
successful in modeling programmers’ information needs and we will mitigate this risk by
developing CodeWitness as Chrome, VS Code, and Slack plugins.

• It is possible that programmers might ignore our bot. However, bots are used extensively
throughout the software development process and we were successful in building a bot at
Microsoft that saw promising adoption by teams [48].

5 Evaluation Plan

We will be applying an iterative user-centered design approach to develop our tools, and we will
seek feedback throughout the process (see Fig. 5 for a timeline). Because of the overlap in studying
each of the three aims, including a shared codebase for the tools and similar study designs for por-
tions of the aims, I believe the proposed research is feasible in a 5-year scope. Our methods will
include informal user studies, gathering feedback from industry researchers, laboratory studies,
classroom studies, field deployments, and interviews. Throughout the project, we will conduct
frequent informal user studies with small samples of programmers and instructors to gather feed-
back on our designs. In our prior work, we found that these informal opportunities to obtain
feedback and identify usability problems gave us crucial ideas for our designs while taking little
time to collect and analyze (e.g., [45, 48]). Moreover, we will conduct multiple laboratory user
studies to compare our designs to that of other tools in a controlled environment. To assist in data
analysis and statistics, we are in collaboration with

see letter of collaboration).
Since it is important for our work to be applied to realistic settings, we will collaborate ex-

tensively with industry researchers. We will periodically seek their feedback on our tool designs,

11

Figure 5: Timeline of the proposed work.

and also collaborate with them to conduct field deployments to gather usage data in professional
settings. Prior to the field deployments, we will pilot the tools in an educational setting with class-
room studies. Across all the tools and studies we will measure usage data to understand when
the elicitations are ignored and how the generated feedback can be improved. When appropriate
we will also gather subjective feedback and opinions on the tools and workflows through semi-
structured interviews.

For CodeInquisitor, we are focused on measuring the quality and quantity of the elicited expla-
nations. We will pilot the tool in lower-level computer science courses at University of Tennessee
(see letter of collaboration), which have 100+ students each per semester. The large
amount of data will enable us to calibrate the tool to elicit an optimal number of explanations at
opportune times. Then we will expand to training other instructors to adopt the tool for their
courses (see letter of collaboration from), and eventually release a
classroom package for any instructor to voluntarily use.

For CodeWitness, we are focused on identifying indicators of when design decisions are made,
how to minimize disruptions, and the usefulness of the elicited explanations as documentation.
We will first pilot the tool in upper-level undergraduate computer science courses at University
of Tennessee that involve a significant group project (see letter of collaboration),
including my own COSC 340: Software Engineering course and my newly designed COSC 540:
Advanced Software Engineering course. Then we will conduct field studies of the tool being used
by professional programmers in ecologically valid settings (see the letter of collaboration from

, , and).
For DevCourier, we are focused on capturing the situations in which new hires have questions

and effectively obtaining an answer from relevant experts. We will conduct a series of studies with
industry partners to understand the complexities that arise during onboarding (see the letter of
collaboration from). Due to the two-sided nature of onboarding
(new hire and mentor), it may be appropriate to use wizard of oz methodology to simulate one
side in a controlled manner while studying the other (e.g., we will simulate the mentor’s answers
given a participant’s questions).

For each our tools, we will release and open source as much of the data and tooling as is
reasonable. Most interestingly, it could be beneficial to the software engineering community for us
to release a well-polished website for each tool that includes instructions, demonstration videos,

12

source code, and binaries to reduce any barriers to adopting our tools. Additionally, I will travel
to software companies to demonstrate our tooling, share our findings, and promote collaboration
on our studies.

6 Education Plan

Integrating CodeInquisitor into introductory programming courses. We will integrate CodeIn-
quisitor into the first and second year programming courses at University of Tennessee (see

letter of collaboration;). From our preliminary
findings, this tool should dramatically reduce the tedium and frustrations involved in learning to
program help our department retain students that may otherwise leave computer science.

Organizing a hackathon for educational programming tools. In an effort to get more students
involved in research, I plan to organize and host a hackathon where teams of students will design
and build educational programming tools, similar to that of CodeInquisitor and CodeWitness. I
will also work with the teams after the hackathon event to assist them in releasing and evaluating
their tools, source code, and demonstration videos. Ideally, this will get more undergraduates
involved in my department’s research and graduate programs.

Pedagogy development based on an inquisitive feedback loop. We are developing new cur-
riculum and pedagogy that emphasize self-explanation through an inquisitive feedback loop. We
will release these materials for instructors to integrate CodeInquisitor into courses. Additionally,
I have been part of my department’s CS101 committee with the goal of reforming the course (and
the early CS curriculum).

Applying CodeWitness to group project courses. We will teach students to use CodeWitness
at University of Tennessee in courses that involve a group programming project. In collaboration
with (see letter of collaboration), we will initially use CodeWitness
in COSC 340: Software Engineering and COSC 423/523: Artificial Intelligence. After piloting the
tool for a year, we will expand it to COSC 540: Advanced Software Engineering and COSC: 425
Machine Learning. Furthermore, we will work with faculty at other universities to use the tool in
their courses (see the letter of collaboration from at the).

Educating professional programmers about CodeWitness and DevCourier. We will prioritize
gaining mainstream adoption of our tools by maintaining documentation and tutorials for using
CodeWitness and DevCourier. In fact, I will visit companies to demonstrate and share the tools as
well as assist them in incorporating them into their software development teams.

Developing a HCI presence at UTK. I have been co-leading an effort to build a human-
computer interaction presence at the University of Tennessee. This includes starting a regu-
larly held HCI seminar across departments, integrating HCI into fundamental computer science
courses (e.g., software engineering, cybersecurity, and machine learning), and designing new
courses focused on HCI. Additionally, we created a shared laboratory that can support three user
studies being held simultaneously, and it houses large computer displays, virtual reality headsets,
and eye trackers.

Student Research Mentorship. My hands-on and applied teaching style has proven effective
in getting undergraduate students involved in research. In fact, I have mentored 11 undergradu-
ate research assistants in the last 3 years, of which 7 have continued on to a graduate program (al-
though most of them originally had no intention to do so). I currently advise 6 graduate students,
several of whom have won prestigious awards, such as the Tennessee Fellowship for Graduate
Excellence and the departmental Outstanding Graduate Teaching Assistant Award. Additionally,
I co-mentor a postdoctoral researcher that in his first year has led a successful multi-disciplinary

13

collaboration at the University of Tennessee. To grow my initiative of involving undergraduate
students in research, I became the faculty advisor for our ACM student chapter and have guest
lectured for numerous engineering courses about user-centered design.

.

7 Expected Outcomes

• Techniques for eliciting structured explanations about program behavior and using them to
address flawed understandings.

• Techniques for eliciting, archiving, and sharing design decision rationale.
• Techniques for capturing questions from new hires and eliciting answers from relevant ex-

perts.
• Novel tool designs for inquisitive feedback loops in various software development contexts.
• Open source implementations of our tool designs (e.g., VS Code plugins).
• Empirical evidence on the benefits of our techniques and tools designs, as well as design

guidelines for other researchers and tool builders.
• Adoption packages for industry teams to integrate our tooling into their software develop-

ment workflows.
• Teaching materials for instructors to incorporate our inquisitive tools into programming

courses.

8 Broader Impacts

Development of a diverse, globally competitive STEM workforce. The proposed tools aim to
lower the barriers programmers face during programming, improve accessibility for people to
learn how to program, and streamline the new hire experience. Since learning to program has
been considered particularly tedious to learn initially, reducing the tedium could make the skill
available to far more people. Overall, this project strives to make considerable impact by helping
a diverse population of novice and expert programmers learn throughout programming tasks.

Improved STEM education and educator development at any level. Through our pilot stud-
ies on CodeInquisitor and CodeWitness in the classes at University of Tennessee, I will develop
classroom packages and pedagogy that I will promote to other educators. I am also determined
to amplify the works of other educators by collaborating with them to disseminate their own ed-
ucational materials. In fact, I assisted a colleague in writing and promoting a free undergraduate
operating systems textbook and blog aimed to reduce the barriers in learning about systems pro-
gramming. Additionally, I am working with our lecturers (non-tenure track instructors) to be
engaged in education research and to attend conferences such as SIGCSE.

Full participation of women, persons with disabilities, and underrepresented minorities in
science, technology, engineering, and mathematics (STEM). To promote diversity in my univer-
sity, I volunteered to be on my department’s CS101 ad hoc committee with a goal of restructuring
our lower-level undergraduate curriculum to attract and retain underrepresented groups by mak-
ing the material more interactive, collaborative, and project-driven. Furthermore, I have applied
findings from educational psychology to my undergraduate software engineering course, such as
the contributing student pedagogy, flipped classrooms, and active learning. I am also encouraging
students to create a more inclusive culture through our local ACM student chapter, which I am

14

the faculty advisor for. Through that, I will organize and host a hackathon to get undergraduates
involved in building and evaluating programming tools aims to overcome issues based on their
education experiences, and ideally, this will get more students involved in our research programs.

Enhanced infrastructure for research and education. My research and education plan are
tightly coupled to integrating my software tools and learning materials in classrooms and be-
yond. Towards this goal, I will release classroom kits for educators and tool postmortems for tool
designers including a comprehensive website with design guidelines, lessons learned, and source,
such that they can integrate inquisitive feedback loops into their software, teams, and teaching.

Increased partnerships between academia, industry, and others. I have collaborated exten-
sively with industry (e.g.,

) and will continue to do so (see letters of collaboration). Previously, I was a Visiting
Researcher at Microsoft in 2019 and did 5 internships during graduate school between 2013–2017
at IBM Research, Microsoft Research, National Instruments twice, and First Horizon. These re-
lationships have been a paramount factor in my education and research career, and I intend to
facilitate those same companies (and others) in recruiting students at University of Tennessee. I
have also budgeted for trips to present our research to companies as way of promoting our tools
and establishing new collaborations.

Increased public scientific literacy and public engagement with science and technology. To
share my research projects to a broader audience, I started a technical blog that has been viewed
over 600,000 times, received over 1000 discussion comments on Reddit and Hacker News, and I’ve
received over 100 messages and emails from educators and students about their experiences re-
lated to my writings. One notable outcome of the blog’s popularity includes myself being featured
on Stack Overflow’s podcast discussing our information foraging research. In the coming year, I
plan to put more effort into these writings and specifically aim to release a series on user-centered
design for non-technical readers as well as a series on creativity and exploratory, bottom-up design
in engineering.

9 Prior Support

Sole PI on CRII: CHS: Overcoming Novice Programmers’ Misconceptions of Program Behavior (#1850027;
$174,956; 09/01/2019–08/31/2022) which produced the preliminary idea and work for an inquis-
itive feedback loop. Intellectual Merits: Published the inquisitive tool concept [43]. Broader Impacts:
Released CodeRibbon as an open source tool, discussed our research on the Stack Overflow pod-
cast [97], and started a research blog that has reached 600,000 views.

Co-PI on CHS: SMALL: Collaborative Research: Adaptive Development Environments: Modeling and
Supporting Cognitive Styles of Software Developers (#2008408; $249,928 my portion out of $499,928 to-
tal; 10/01/2020–09/30/2022) that aims to model various program solving styles of programmers,
and then integrate predictive models into developer tools to better support those needs. Intellec-
tual Merits: Published a tool and study [1] on how providing the right information at the right
time and place can better support new programmers. Broader Impacts: This work aims to make
developer tools more accessible to programmers with varying problem solving styles.

15

References

[1] M. Adeli, N. Nelson, S. Chattopadhyay, H. Coffey, A. Henley, and A. Sarma. Supporting
code comprehension via annotations: Right information at the right time and place. In 2020
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 1–10,
2020.

[2] A. Altadmri and N. C. Brown. 37 million compilations: Investigating novice programming
mistakes in large-scale student data. In Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, SIGCSE ’15, pages 522–527, New York, NY, USA, 2015. ACM.

[3] E. Arias, H. Eden, G. Fischer, A. Gorman, and E. Scharff. Transcending the individual human
mind—creating shared understanding through collaborative design. ACM Trans. Comput.-
Hum. Interact., 7(1):84–113, Mar. 2000.

[4] V. Augustine, P. Francis, X. Qu, D. Shepherd, W. Snipes, C. Braunlich, and T. Fritz. A field
study on fostering structural navigation with prodet. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, volume 2, pages 229–238, May 2015.

[5] A. Bacchelli and C. Bird. Expectations, outcomes, and challenges of modern code review. In
ICSE, pages 712–721. IEEE Computer Society, 2013.

[6] V. Balachandran. Reducing human effort and improving quality in peer code reviews us-
ing automatic static analysis and reviewer recommendation. In ICSE, pages 931–940. IEEE
Computer Society, 2013.

[7] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa. Newcomers’barriers.
. . is that all? an analysis of mentors’and newcomers’barriers in oss projects. Computer
Supported Cooperative Work (CSCW), 27(3):679–714, 2018.

[8] B. A. Becker. An effective approach to enhancing compiler error messages. In Proceedings of
the 47th ACM Technical Symposium on Computing Science Education, SIGCSE ’16, pages 126–
131, New York, NY, USA, 2016. ACM.

[9] B. A. Becker. A new metric to quantify repeated compiler errors for novice programmers.
In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education, ITiCSE ’16, pages 296–301, New York, NY, USA, 2016. ACM.

[10] A. Begel and N. Nagappan. Pair programming: What’s in it for me? In Proceedings of the Sec-
ond ACM-IEEE International Symposium on Empirical Software Engineering and Measurement,
ESEM ’08, page 120–128, New York, NY, USA, 2008. Association for Computing Machinery.

[11] K. Bielaczyc, P. L. Pirolli, and A. L. Brown. Training in self-explanation and self-regulation
strategies: Investigating the effects of knowledge acquisition activities on problem solving.
Cognition and instruction, 13(2):221–252, 1995.

[12] K. Bielaczyc, P. L. Pirolli, and A. L. Brown. Collaborative explanations and metacognition:
Identifying successful learning activities in the acquisition of cognitive skills. In Proceedings
of the sixteenth annual Conference of the Cognitive Science Society, pages 39–44. Routledge, 2019.

[13] R. Britto, D. S. Cruzes, D. Smite, and A. Sablis. Onboarding software developers and teams
in three globally distributed legacy projects: A multi-case study. Journal of Software: Evolution
and Process, 30(4):e1921, 2018. e1921 JSME-17-0088.R2.

1

[14] N. C. Brown and A. Altadmri. Investigating novice programming mistakes: Educator beliefs
vs. student data. In Proceedings of the Tenth Annual Conference on International Computing
Education Research, ICER ’14, pages 43–50, New York, NY, USA, 2014. ACM.

[15] N. C. C. Brown, M. Kölling, D. McCall, and I. Utting. Blackbox: A large scale repository of
novice programmers’ activity. In Proceedings of the 45th ACM Technical Symposium on Com-
puter Science Education, SIGCSE ’14, pages 223–228, New York, NY, USA, 2014. ACM.

[16] C. J. Cai, S. Winter, D. Steiner, L. Wilcox, and M. Terry. ”hello ai”: Uncovering the onboard-
ing needs of medical practitioners for human-ai collaborative decision-making. Proc. ACM
Hum.-Comput. Interact., 3(CSCW), Nov. 2019.

[17] J. Cao, S. D. Fleming, M. Burnett, and C. Scaffidi. Idea Garden: Situated support for problem
solving by end-user programmers. Interacting with Computers, 27(6):640–660, Nov. 2015.

[18] P. Chandar, Y. Khazaeni, M. Davis, M. Muller, M. Crasso, Q. V. Liao, N. S. Shami, and
W. Geyer. Leveraging conversational systems to assists new hires during onboarding. In
R. Bernhaupt, G. Dalvi, A. Joshi, D. K. Balkrishan, J. O’Neill, and M. Winckler, editors,
Human-Computer Interaction - INTERACT 2017, pages 381–391, Cham, 2017. Springer Inter-
national Publishing.

[19] S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik. What’s Wrong with Com-
putational Notebooks? Pain Points, Needs, and Design Opportunities, page 1–12. Association for
Computing Machinery, New York, NY, USA, 2020.

[20] M. T. Chi, M. Bassok, M. W. Lewis, P. Reimann, and R. Glaser. Self-explanations: How
students study and use examples in learning to solve problems. Cognitive science, 13(2):145–
182, 1989.

[21] M. T. Chi, N. De Leeuw, M.-H. Chiu, and C. Lavancher. Eliciting self-explanations improves
understanding. Cognitive Science, 18(3):439–477, 1994.

[22] J. Coelho and M. T. Valente. Why modern open source projects fail. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, page 186–196, New
York, NY, USA, 2017. Association for Computing Machinery.

[23] R. DeLine, M. Czerwinski, and G. Robertson. Easing program comprehension by sharing
navigation data. In Proceedings of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC ’05, pages 241–248, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[24] P. Denny, A. Luxton-Reilly, and D. Carpenter. Enhancing syntax error messages appears
ineffectual. In Proceedings of the 2014 Conference on Innovation & Technology in Computer
Science Education, ITiCSE ’14, pages 273–278, New York, NY, USA, 2014. ACM.

[25] P. Denny, A. Luxton-Reilly, and B. Simon. Evaluating a new exam question: Parsons prob-
lems. In Proceedings of the Fourth International Workshop on Computing Education Research,
ICER ’08, page 113–124, New York, NY, USA, 2008. Association for Computing Machinery.

[26] J. Dominic, J. Houser, I. Steinmacher, C. Ritter, and P. Rodeghero. Conversational bot for
newcomers onboarding to open source projects. In Proceedings of the IEEE/ACM 42nd Inter-
national Conference on Software Engineering Workshops, ICSEW’20, page 46–50, New York, NY,
USA, 2020. Association for Computing Machinery.

2

[27] Y. Du, A. Luxton-Reilly, and P. Denny. A Review of Research on Parsons Problems, page 195–202.
Association for Computing Machinery, New York, NY, USA, 2020.

[28] A. Ebrahimi. Novice programmer errors: Language constructs and plan composition. Inter-
national Journal of Human Computer Studies, 41(4):457–480, 1994.

[29] B. Ericson, A. McCall, and K. Cunningham. Investigating the affect and effect of adaptive
parsons problems. In Proceedings of the 19th Koli Calling International Conference on Computing
Education Research, Koli Calling ’19, New York, NY, USA, 2019. Association for Computing
Machinery.

[30] B. J. Ericson, J. D. Foley, and J. Rick. Evaluating the efficiency and effectiveness of adaptive
parsons problems. In Proceedings of the 2018 ACM Conference on International Computing Edu-
cation Research, ICER ’18, page 60–68, New York, NY, USA, 2018. Association for Computing
Machinery.

[31] B. J. Ericson, L. E. Margulieux, and J. Rick. Solving parsons problems versus fixing and
writing code. In Proceedings of the 17th Koli Calling International Conference on Computing
Education Research, Koli Calling ’17, page 20–29, New York, NY, USA, 2017. Association for
Computing Machinery.

[32] E. Fast, D. Steffee, L. Wang, J. R. Brandt, and M. S. Bernstein. Emergent, crowd-scale pro-
gramming practice in the ide. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2491–2500, New York, NY, USA, 2014. ACM.

[33] A. L. Ferreira, R. J. Machado, J. G. Silva, R. F. Batista, L. Costa, and M. C. Paulk. An approach
to improving software inspections performance. In 2010 IEEE International Conference on
Software Maintenance, pages 1–8, 2010.

[34] T. Flowers, J. Jackson, and C. Carver. Empowering students and building confidence in
novice programmers through gauntlet. In 34th Annual Frontiers in Education, 2004. FIE
2004.(FIE), volume 00, pages T3H/10–T3H/13 Vol. 1, 10 2004.

[35] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen. Codehint: Dynamic and interac-
tive synthesis of code snippets. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 653–663, New York, NY, USA, 2014. ACM.

[36] P. J. Guo. Online python tutor: Embeddable web-based program visualization for cs ed-
ucation. In Proceeding of the 44th ACM Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 579–584, New York, NY, USA, 2013. ACM.

[37] P. J. Guo. Codeopticon: Real-time, one-to-many human tutoring for computer program-
ming. In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology, UIST ’15, pages 599–608, New York, NY, USA, 2015. ACM.

[38] P. J. Guo, J. White, and R. Zanelatto. Codechella: Multi-user program visualizations for real-
time tutoring and collaborative learning. In 2015 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 79–87, Oct 2015.

[39] K. J. Harms, D. Cosgrove, S. Gray, and C. Kelleher. Automatically generating tutorials to
enable middle school children to learn programming independently. In Proceedings of the
12th International Conference on Interaction Design and Children, IDC ’13, pages 11–19, New
York, NY, USA, 2013. ACM.

3

[40] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. What would other programmers
do: Suggesting solutions to error messages. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages 1019–1028, New York, NY, USA, 2010. ACM.

[41] R. G. Hausmann and M. H. Chi. Can a computer interface support self-explaining. Cognitive
Technology, 7(1):4–14, 2002.

[42] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann. Tutorons: Generating context-
relevant, on-demand explanations and demonstrations of online code. In 2015 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC), pages 3–12, Oct 2015.

[43] A. Henley, J. Ball, B. Klein, A. Rutter, and D. Lee. An inquisitive code editor for address-
ing novice programmers’ misconceptions of program behavior. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering Education and Training
(ICSE-SEET), pages 165–170, 2021.

[44] A. Z. Henley and S. D. Fleming. The Patchworks code editor: Toward faster navigation with
less code arranging and fewer navigation mistakes. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’14, pages 2511–2520, New York, NY, USA,
2014. ACM.

[45] A. Z. Henley and S. D. Fleming. Yestercode: Improving code-change support in visual
dataflow programming environments. In 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 106–114, Sept 2016.

[46] A. Z. Henley and S. D. Fleming. Codedeviant: Helping programmers detect edits that ac-
cidentally alter program behavior. In 2018 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 65–73, Oct 2018.

[47] A. Z. Henley, S. D. Fleming, and M. V. Luong. Toward principles for the design of naviga-
tion affordances in code editors: An empirical investigation. In Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, CHI ’17, pages 5690–5702, New York, NY,
USA, 2017. ACM.

[48] A. Z. Henley, K. Muçlu, M. Christakis, S. D. Fleming, and C. Bird. Cfar: A tool to increase
communication, productivity, and review quality in collaborative code reviews. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages
157:1–157:13, New York, NY, USA, 2018. ACM.

[49] A. Z. Henley, A. Singh, S. D. Fleming, and M. V. Luong. Helping programmers navigate
code faster with Patchworks: A simulation study. In Proceedings of the 2014 IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC ’14, pages 77–80, July 2014.

[50] E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring the neighborhood with Dora to expedite
software maintenance. In Proc. 22nd IEEE/ACM Int’l Conf. Automated Software Eng. (ASE,
pages 14–23, 2007.

[51] J. Hoffswell, A. Satyanarayan, and J. Heer. Augmenting code with in situ visualizations to
aid program understanding. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, pages 532:1–532:12, New York, NY, USA, 2018. ACM.

4

[52] R. Holmes and G. C. Murphy. Using structural context to recommend source code examples.
In Proceedings. 27th International Conference on Software Engineering, 2005. ICSE 2005., pages
117–125, May 2005.

[53] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identifying and correcting java program-
ming errors for introductory computer science students. In Proceedings of the 34th SIGCSE
Technical Symposium on Computer Science Education, SIGCSE ’03, pages 153–156, New York,
NY, USA, 2003. ACM.

[54] M. Ichinco, W. Hnin, and C. Kelleher. Suggesting examples to novice programmers in an
open-ended context with the example guru. In 2016 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), pages 230–231, Sept 2016.

[55] M. Ichinco, W. Y. Hnin, and C. L. Kelleher. Suggesting api usage to novice programmers with
the example guru. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pages 1105–1117, New York, NY, USA, 2017. ACM.

[56] M. Ichinco and C. Kelleher. Semi-automatic suggestion generation for young novice pro-
grammers in an open-ended context. In Proceedings of the 17th ACM Conference on Interaction
Design and Children, IDC ’18, pages 405–412, New York, NY, USA, 2018. ACM.

[57] J. Jackson, M. Cobb, and C. Carver. Identifying top java errors for novice programmers. In
Proceedings Frontiers in Education 35th Annual Conference, pages T4C–T4C, Oct 2005.

[58] W. Jernigan, A. Horvath, M. Lee, M. Burnett, T. Cuilty, S. Kuttal, A. Peters, I. Kwan, F. Bah-
mani, and A. Ko. A principled evaluation for a principled Idea Garden. In Proc. 2015 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’15), pages 235–243,
Oct. 2015.

[59] M. Johnson and M. Senges. Learning to be a programmer in a complex organization.
22(3):180–194, 2021/07/19 2010.

[60] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Transactions on Software Engineering,
28(7):654–670, 2002.

[61] H. Kang and P. J. Guo. Omnicode: A novice-oriented live programming environment with
always-on run-time value visualizations. In Proceedings of the 30th Annual ACM Symposium
on User Interface Software and Technology, UIST ’17, pages 737–745, New York, NY, USA, 2017.
ACM.

[62] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers. Stacksplorer: Call graph
navigation helps increasing code maintenance efficiency. In Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology, UIST ’11, pages 217–224, New
York, NY, USA, 2011. ACM.

[63] C. Kennedy and E. T. Kraemer. Qualitative observations of student reasoning: Coding in
the wild. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE ’19, page 224–230, New York, NY, USA, 2019. Association for
Computing Machinery.

5

[64] M. Kersten and G. C. Murphy. Using task context to improve programmer productivity.
In Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE ’06, pages 1–11, New York, NY, USA, 2006. ACM.

[65] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated software development
teams. In Proceedings of the 29th International Conference on Software Engineering, ICSE ’07,
pages 344–353, Washington, DC, USA, 2007. IEEE Computer Society.

[66] A. J. Ko and B. A. Myers. Designing the whyline: A debugging interface for asking ques-
tions about program behavior. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’04, pages 151–158, New York, NY, USA, 2004. ACM.

[67] A. J. Ko and B. A. Myers. Debugging reinvented: Asking and answering why and why
not questions about program behavior. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 301–310, New York, NY, USA, 2008. ACM.

[68] A. J. Ko and B. A. Myers. Finding causes of program output with the Java Whyline. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages
1569–1578, New York, NY, USA, 2009. ACM.

[69] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An exploratory study of how develop-
ers seek, relate, and collect relevant information during software maintenance tasks. IEEE
Trans. Softw. Eng., 32(12):971–987, Dec. 2006.

[70] Y. B.-D. Kolikant. Students’ alternative standards for correctness. In Proceedings of the First
International Workshop on Computing Education Research, ICER ’05, pages 37–43, New York,
NY, USA, 2005. ACM.

[71] O. Kononenko, O. Baysal, and M. W. Godfrey. Code review quality: How developers see
it. In Proceedings of the 38th International Conference on Software Engineering, ICSE ’16, page
1028–1038, New York, NY, USA, 2016. Association for Computing Machinery.

[72] J.-P. Krämer, J. Kurz, T. Karrer, and J. Borchers. Blaze: Supporting two-phased call graph
navigation in source code. In CHI ’12 Extended Abstracts on Human Factors in Computing
Systems, CHI EA ’12, pages 2195–2200, New York, NY, USA, 2012. ACM.

[73] A. Labuschagne and R. Holmes. Do onboarding programs work? In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, pages 381–385, 2015.

[74] T. D. LaToza and B. A. Myers. Developers ask reachability questions. In Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering-Volume 1, pages 185–194.
ACM, 2010.

[75] T. D. LaToza and B. A. Myers. Hard-to-answer questions about code. In Evaluation and
Usability of Programming Languages and Tools, PLATEAU ’10, pages 8:1–8:6, New York, NY,
USA, 2010. ACM.

[76] T. D. LaToza and B. A. Myers. Visualizing call graphs. In Visual Languages and Human-Centric
Computing (VL/HCC), 2011 IEEE Symposium on, pages 117–124. IEEE, 2011.

[77] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining Mental Models: A Study of Developer
Work Habits, page 492–501. Association for Computing Machinery, New York, NY, USA,
2006.

6

[78] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D. Fleming. How program-
mers debug, revisited: An information foraging theory perspective. IEEE Trans. Softw. Eng.,
39(2):197–215, Feb. 2013.

[79] T. Lehtinen, A. Lukkarinen, and L. Haaranen. Students struggle to explain their own pro-
gram code. In Proceedings of the 26th ACM Conference on Innovation and Technology in Computer
Science Education V. 1, ITiCSE ’21, page 206–212, New York, NY, USA, 2021. Association for
Computing Machinery.

[80] T. Lehtinen, A. L. Santos, and J. Sorva. Letâ€™s ask students about their programs, auto-
matically. In 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC),
pages 467–475, Los Alamitos, CA, USA, may 2021. IEEE Computer Society.

[81] T. Lieber, J. R. Brandt, and R. C. Miller. Addressing misconceptions about code with always-
on programming visualizations. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’14, pages 2481–2490, New York, NY, USA, 2014. ACM.

[82] D. C. McFarlane. Comparison of four primary methods for coordinating the interruption of
people in human-computer interaction. Human-Computer Interaction, 17(1):63–139, 2002.

[83] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review coverage and
code review participation on software quality: A case study of the qt, vtk, and itk projects.
In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, page
192–201, New York, NY, USA, 2014. Association for Computing Machinery.

[84] B. B. Morrison, L. E. Margulieux, B. Ericson, and M. Guzdial. Subgoals help students solve
parsons problems. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education, SIGCSE ’16, page 42–47, New York, NY, USA, 2016. Association for Computing
Machinery.

[85] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann. Crowdsourcing suggestions to pro-
gramming problems for dynamic web development languages. In CHI ’11 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’11, pages 1525–1530, New York, NY, USA,
2011. ACM.

[86] M.-H. Nienaltowski, M. Pedroni, and B. Meyer. Compiler error messages: What can help
novices? In Proceedings of the 39th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’08, pages 168–172, New York, NY, USA, 2008. ACM.

[87] S. Oney and J. Brandt. Codelets: Linking interactive documentation and example code in
the editor. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 2697–2706, New York, NY, USA, 2012. ACM.

[88] D. Parsons and P. Haden. Parson’s programming puzzles: a fun and effective learning tool
for first programming courses. In Proceedings of the 8th Australasian Conference on Computing
Education-Volume 52, pages 157–163, 2006.

[89] B. Peddycord III, A. Hicks, and T. Barnes. Generating hints for programming problems
using intermediate output. In Educational Data Mining 2014. Citeseer, 2014.

[90] R. S. Pettit, J. Homer, and R. Gee. Do enhanced compiler error messages help students?: Re-
sults inconclusive. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’17, pages 465–470, New York, NY, USA, 2017. ACM.

7

[91] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B. John, R. Bellamy, and
C. Swart. Reactive information foraging: An empirical investigation of theory-based recom-
mender systems for programmers. In Proc. ACM SIGCHI Conf. Human Factors in Computing
Systems, CHI ’12, pages 1471–1480, New York, NY, USA, 2012. ACM.

[92] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan, A. Z. Henley, J. Macbeth,
C. Hill, and A. Horvath. To fix or to learn? How production bias affects developers’ infor-
mation foraging during debugging. In 31st IEEE International Conference on Software Mainte-
nance and Evolution, ICSME ’15, pages 11–20, 2015.

[93] D. Piorkowski, A. Z. Henley, T. Nabi, S. D. Fleming, C. Scaffidi, and M. Burnett. Foraging
and navigations, fundamentally: Developers’ predictions of value and cost. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, pages 97–108, New York, NY, USA, 2016. ACM.

[94] D. Piorkowski, S. Penney, A. Z. Henley, M. Pistoia, M. Burnett, O. Tripp, and P. Ferrara. For-
aging goes mobile: Foraging while debugging on mobile devices. In 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing (VL/HCC), pages 9–17, Oct 2017.

[95] D. J. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi, R. K. Bellamy, and
J. Jordahl. The whats and hows of programmers’ foraging diets. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages 3063–3072. ACM, 2013.

[96] P. Pirolli and M. Recker. Learning strategies and transfer in the domain of programming.
Cognition and Instruction, 12(3):235–275, 1994.

[97] B. Popper, R. Donovan, and A. Henley. Podcast 347: Information foraging - the tactics great
developers use to find solutions, Jun 2021.

[98] J. Prather, R. Pettit, K. H. McMurry, A. Peters, J. Homer, N. Simone, and M. Cohen. On
novices’ interaction with compiler error messages: A human factors approach. In Proceedings
of the 2017 ACM Conference on International Computing Education Research, ICER ’17, pages 74–
82, New York, NY, USA, 2017. ACM.

[99] M. Robillard, R. Walker, and T. Zimmermann. Recommendation systems for software engi-
neering. IEEE Software, 27(4):80–86, July 2010.

[100] P. Rodeghero, T. Zimmermann, B. Houck, and D. Ford. Please turn your cameras on: Remote
onboarding of software developers during a pandemic. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 41–50,
2021.

[101] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov. A methodology for testing
spreadsheets. ACM Trans. Softw. Eng. Methodol., 10(1):110–147, Jan. 2001.

[102] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg, and C. Winter. Tricorder: Building a
program analysis ecosystem. In ICSE, pages 598–608. IEEE Computer Society, 2015.

[103] A. C. Short and A. Z. Henley. Towards an empirically-based ide: An analysis of code size
and screen space. In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 199–203, 2019.

8

[104] J. Sillito, G. C. Murphy, and K. D. Volder. Asking and answering questions during a pro-
gramming change task. IEEE Transactions on Software Engineering, 34(4):434–451, July 2008.

[105] S. Sim and R. Holt. The ramp-up problem in software projects: a case study of how soft-
ware immigrants naturalize. In Proceedings of the 20th International Conference on Software
Engineering, pages 361–370, 1998.

[106] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Supporting navigation in software mainte-
nance. In Proceedings of the 21st IEEE International Conference on Software Maintenance, ICSM
’05, pages 325–334, Washington, DC, USA, 2005. IEEE Computer Society.

[107] A. Singh, A. Z. Henley, S. D. Fleming, and M. V. Luong. An empirical evaluation of models
of programmer navigation. In IEEE Int’l Conference on Software Maintenance and Evolution,
ICSME ’16, pages 9–19, 2016.

[108] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and H. R. Lipford. Questions developers ask
while diagnosing potential security vulnerabilities with static analysis. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages 248–
259, New York, NY, USA, 2015. ACM.

[109] J. C. Spohrer and E. Soloway. Novice mistakes: Are the folk wisdoms correct? Commun.
ACM, 29(7):624–632, July 1986.

[110] I. Stamouli and M. Huggard. Object oriented programming and program correctness: The
students’ perspective. In Proceedings of the Second International Workshop on Computing Edu-
cation Research, ICER ’06, pages 109–118, New York, NY, USA, 2006. ACM.

[111] I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles. Social barriers faced by newcomers
placing their first contribution in open source software projects. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW ’15,
page 1379–1392, New York, NY, USA, 2015. Association for Computing Machinery.

[112] R. Suzuki, G. Soares, A. Head, E. Glassman, R. Reis, M. Mongiovi, L. D’Antoni, and B. Hart-
mann. Tracediff: Debugging unexpected code behavior using trace divergences. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages 107–
115, Oct 2017.

[113] D. Thomas and A. Hunt. The Pragmatic Programmer: your journey to mastery. Addison-Wesley
Professional, 2019.

[114] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating code review prac-
tices in defective files: An empirical study of the qt system. In 2015 IEEE/ACM 12th Working
Conference on Mining Software Repositories, pages 168–179, 2015.

[115] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, and D. Dig. Accurate and efficient
refactoring detection in commit history. In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 483–494, 2018.

[116] D. Čubranić and G. C. Murphy. Hipikat: Recommending pertinent software development
artifacts. In Proc. 25th Int’l Conf. on Software Engineering (ICSE ’03), pages 408–418, 2003.

9

[117] A. Vihavainen, C. S. Miller, and A. Settle. Benefits of self-explanation in introductory pro-
gramming. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
pages 284–289, 2015.

[118] J. Warner and P. J. Guo. Codepilot: Scaffolding end-to-end collaborative software develop-
ment for novice programmers. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, CHI ’17, pages 1136–1141, New York, NY, USA, 2017. ACM.

[119] F. W. Warr and M. P. Robillard. Suade: Topology-based searches for software investigation.
In Proc. ICSE, pages 780–783, 2007.

[120] C. Watson, F. W. Li, and J. L. Godwin. Bluefix: using crowd-sourced feedback to support
programming students in error diagnosis and repair. In International Conference on Web-Based
Learning, pages 228–239. Springer, 2012.

[121] L. Williams, A. Shukla, and A. Anton. An initial exploration of the relationship between
pair programming and brooks’ law. In Agile Development Conference, pages 11–20, 2004.

[122] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, and
G. Rothermel. Harnessing curiosity to increase correctness in end-user programming. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03, pages
305–312, New York, NY, USA, 2003. ACM.

[123] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li. Measuring program comprehen-
sion: A large-scale field study with professionals. IEEE Transactions on Software Engineering,
44(10):951–976, 2018.

[124] Y. Ye and G. Fischer. Supporting reuse by delivering task-relevant and personalized infor-
mation. In Proceedings of the 24th International Conference on Software Engineering, ICSE ’02,
pages 513–523, New York, NY, USA, 2002. ACM.

[125] M. Zhou and A. Mockus. Growth of newcomer competence: Challenges of globalization.
FoSER ’10, page 443–448, New York, NY, USA, 2010. Association for Computing Machinery.

10

