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ABSTRACT
Timely, personalized feedback is essential for students learning
programming. LLM-powered tools like ChatGPT offer instant sup-
port, but reveal direct answers with code, which may hinder deep
conceptual engagement. We developed CodeAid, an LLM-powered
programming assistant delivering helpful, technically correct re-
sponses, without revealing code solutions. CodeAid answers con-
ceptual questions, generates pseudo-code with line-by-line explana-
tions, and annotates student’s incorrect code with fix suggestions.
We deployed CodeAid in a programming class of 700 students for a
12-week semester. A thematic analysis of 8,000 usages of CodeAid
was performed, further enriched by weekly surveys, and 22 student
interviews. We then interviewed eight programming educators to
gain further insights. Our findings reveal four design considerations
for future educational AI assistants:D1) exploiting AI’s unique ben-
efits; D2) simplifying query formulation while promoting cognitive
engagement; D3) avoiding direct responses while encouraging mo-
tivated learning; and D4) maintaining transparency and control for
students to asses and steer AI responses.
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1 INTRODUCTION
An increasing number of students are learning to program, not just
in traditional computer science and engineering degrees, but across
a wide range of subject areas [20]. Numerous successful initiatives
have been developed to broaden participation in computing, for
example, by combining computing majors with disciplines in which
there has traditionally been greater gender diversity [7]. However,
this surge of interest is putting pressure on resources at many insti-
tutions and causing concern amongst administrators and educators
[46].

A particularly challenging aspect involves delivering on-the-spot
assistance when students need help. Traditional approaches, such
as running scheduled office hours in which students can approach
instructors and teaching assistants, are often poorly utilized [56].
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Moreover, in-person support is not equitable as not all students feel
comfortable seeking help from an instructor, and students who are
bolder may receive help repeatedly while others wait [55]. There
is an urgent need to develop more scalable, equitable and student-
friendly solutions for providing support in programming courses.

The recent emergence of large language models (LLMs) may of-
fer one solution. LLM-powered AI tools such as ChatGPT [48] can
act as powerful coding assistants that generate code from natural
language descriptions. However, the rapid growth and pervasive-
ness of LLMs have raised concerns about their use in educational
settings [26]. This has led to some institutions banning access to
tools like ChatGPT [24]. In computing education, in particular, con-
cerns have been voiced regarding issues of academic integrity and
student over-reliance [3, 30]. Indeed, research has shown that LLMs
can generate direct solutions to almost any problem typical in intro-
ductory programming courses [12, 16]. To develop pedagogically
effective real-time support solutions for programming courses, it
is necessary to implement suitable "guardrails" that restrict the
open-ended AI’s ability in generating direct solutions even when
prompted. This ensures students use the AI constructively [14].

In this paper, we present CodeAid, an LLM-powered coding
assistant that is designed to meet the needs of both students and
educators: being helpful and technically correct, while not directly
revealing code solutions. We used an iterative design approach that
involved frequent requirements elicitation and feedback from the
course instructor, who taught the course in which CodeAid was
deployed. CodeAid allowed students to (i) ask general programming
questions, (ii) ask questions about the code they provide, (iii) explain
the code they provide, (iv) help fix the code they provide, or (v) help
write code.

We deployed CodeAid in a large introductory C and Systems
Programming course, spanning a 12-week semester, with about 700
university students. During the first half of the course, we analyzed
usage data and provided weekly reports to the course instructor.
Halfway through the course, we made several updates to the as-
sistant based on this feedback. Overall, during the semester-long
deployment, we collected data from multiple sources: (i) more than
8,000 interactions with CodeAid along with ratings from students
for each generated response, (ii) ten weekly surveys about students’
usage of CodeAid in comparison with other learning resources,
(iii) 22 structured interviews with students discussing CodeAid’s
features, usability, and helpfulness in learning, and (iv) a final anony-
mous survey comparing students’ usage of CodeAid with other AI
coding tools including ChatGPT. We then performed a thematic
analysis on 2,100 randomly sampled usages of the system (includ-
ing the questions that were asked, provided code, and generated
responses). Lastly, we presented the results of our deployment to
eight University-level programming course instructors from six
countries and conducted semi-structured interviews with them to
gain further insights into how such AI assistants may be adopted
and integrated into new courses in the future.

To effectively understand the implications of AI-powered tools
in programming education, this paper is guided by the following
research questions:

• RQ1 - Usage Patterns: What patterns emerged in student
usage of CodeAid, in terms of frequency, choice of features,
usage patterns, and the nature of questions posed?

• RQ2 - CodeAid Responses: How effective was CodeAid in
producing technically correct and helpful responses without
directly revealing coding solutions?

• RQ3 - Student Perspectives: How did students perceive
CodeAid and its comparative advantages over existing tools
including ChatGPT?

• RQ4 - Educator’s Perspectives: What are the perspec-
tives of educators regarding learner-focused AI assistants
like CodeAid in terms of its integration into the curriculum,
recommendations for improvement, and effective pedagogy?

By synthesizing answers to the above research questions, this
paper presents a critical analysis of the broader design space for AI
assistants like CodeAid in programming education. We draw on the
experience of iteratively developing CodeAid and on the insights
from its semester-long deployment to identify four major design
considerations for tool design. We highlight the key trade-offs that
need to be considered, and present a set of generalizable guidelines
for the design of pedagogical LLM-powered coding assistants.

2 RELATEDWORK
The recent emergence of Large Language Models (LLMs), and their
wide array of potential applications, has sparked enormous research
interest [5] and have generated intense debate about the opportu-
nities and challenges they present, especially in domains such as
education [14, 26].

2.1 LLMs in Computer Science Education
As LLMs becomemorewidely used in practice, education researchers
are exploring the potential of LLMs to produce educational content,
enhance student engagement and customize learning experiences
[26]. This is especially true in computing education, given that
code-generating tools are becoming widely adopted in industry
practice. This has led to ongoing discussions about the need to
change how computing is taught [14]. Instructor opinion on this
matter is currently divided. Lau and Guo [30] interviewed 20 in-
troductory programming instructors to understand how they plan
to adapt their courses. The authors found that in the short term,
many educators planned to discourage "AI-assisted cheating" by
banning and increasing the weighting of invigilated exam scores,
while others are more willing to embrace AI tools by integrating
them into their classes.

Recent work in the computer science education community has
started to explore the implications and opportunities of LLMs on
computer science learning from different perspectives [3]. Most of
this recent work has focused on understanding the capabilities of
LLMs for completing programming tasks [12] and on generating
instructional content [34]. For example, Finnie-Ansley et al. [17]
showed that Open AI Codex performs better than most students
on code writing questions in both CS1 and CS2 exams. Similarly,
Savelka et al. compared the capabilities of GPT-3 and GPT-4 on 599
programming exercises from three Python programming courses
and found that the GPT models evolved from completely failing
the typical programming class’ assessments (the original GPT-3)
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to passing the courses with no human involvement (GPT-4) [54].
In terms of generating learning resources, early work by Sarsa et
al. [53] analyzed the novelty, plausibility, and readiness of 120 pro-
gramming exercises generated by OpenAI Codex and proposed the
potential of using such models to come up with coding assignments.
In contrast, we explore the use of LLMs to help students complete
programming exercises without providing direct code solutions.

2.2 Question Answering
Providing accurate and timely answers to student questions is im-
portant for effective learning, however, this is a challenge for many
computing educators given that class sizes are growing. Moreover,
not all students feel equally comfortable approaching an instructor
or teaching assistant for help, which can lead to inequity in comput-
ing classrooms [18]. The prospect of providing LLM-based support
for answering student questions is therefore of great interest to
educators [29]. In recent work, Liffiton et al. describe initial work
in this direction with their CodeHelp tool which provides assis-
tance to programming students but employs guardrails to avoid
directly revealing solutions [37]. Students using CodeHelp can en-
ter a free-form question into a text area, along with code and an
optional error message. They found that students using CodeHelp
over a semester-long programming course (52 students) valued
the on-demand availability of the tool, but mostly found it useful
for answering specific code-related tasks such as fixing errors. In
contrast, CodeAid offers a range of input templates and interactive
response formats to cater to diverse student needs. Furthermore,
whereas CodeHelp’s evaluation centered around student usage and
perceptions, CodeAid delves deeper, assessing response quality
through thematic analysis and broadening the evaluation scope
by involving a larger student cohort (700 students) and gathering
insights from course instructors.

2.3 Explaining Code
Accurate explanations of code are useful for students learning pro-
gramming, and can help them improve their reasoning when writ-
ing their own code [45]. For example, ‘explain in plain English’
questions prompt students to explain their understanding of code
at an abstract level [62], and provides both long-term and short-term
learning benefits [45, 59]. Modelling explanations created by ex-
perts is an effective way for students to develop this important skill,
however, generating high-quality explanations for a large quantity
of varying code fragments represents a significant workload for
instructors [39].

The generation of code explanations by LLMs is an active area of
research. MacNeil et al. [39] reported student experience with LLM-
generated code explanations in a web software development e-book.
They showed that most students perceived the code explanations as
helpful, but engagement depends on code length, code complexity
and explanation types. Recent work by Leinonen et al. [33] showed
that LLMs can generate code explanations that are more accurate
and easier to understand than those created by students themselves,
thus providing a potential scalable solution when compared to peer-
generated approaches. CodeAid enhances this by allowing students
to ask questions directly from their code to gain clarity on specific

concepts, while also offering an interactive feature for line-by-line
code explanations.

2.4 Writing and Debugging Code
The ability to write code has been a traditionally important learn-
ing outcome for novices in introductory programming courses. A
common approach for the development of code writing skills has
been through the use of frequent programming practice with many
small problems [1, 13]. LLMs have shown themselves capable of
solving introductory level programming problems with very high
accuracy [16, 52], and thus can provide direct support for code
writing when students need help. The literature on debugging also
has a long history, and various tools [21, 22] and activities have
been proposed to help novices and students learn debugging tech-
niques [31, 36, 41, 42]. Recent work has shown that LLMs have
the potential to be used to assist in many aspects of debugging,
including producing more understandable programming error mes-
sages [34] and providing high-precision feedback on code for fixing
syntax errors [49]. CodeAid uses a similar, high-precision method
for feedback generation, but also tries to improve the experience by
visually annotating the erroneous sections of students’ code with
suggestions for corrections.

Kazemitabaar et al. developed Coding Steps to explore the use of
LLM-based code generators for supporting learners in introductory
programming [27]. Coding Steps incorporates a code generator
into the user interface of an online programming tool. Students can
generate code by providing a natural language prompt to the tool,
which is then sent to the OpenAI Codex API, and the response is
automatically pasted into the student’s code editor. They studied
students using Coding Steps to solve a large set of Python program-
ming tasks. One key finding was that students frequently copied
the exercise questions as prompts and then used the AI-generated
code without making any alterations to it. This reliance on the code
generator is suggestive of the over-dependency problem [9–11].
To address this, CodeAid integrates guardrails to restrict the open-
ended AI system from generating direct code solutions even if stu-
dents ask for them. Additionally, it uses scaffolding techniques like
interactive pseudo-code and code annotations to support students
in transitioning from understanding concepts to independently
writing and debugging their code.

3 INITIAL SYSTEM DESIGN AND
ARCHITECTURE

CodeAid is an LLM-based programming assistant which aims to
assist with programming assignments and reinforce concepts, simi-
lar to a teaching assistant, as outlined by Mirza et al [44]. CodeAid
was designed based on prior literature, OpenAI API capabilities, in-
structor consultations, and pilot studies. The platform has five main
features: Help Write Code and Help Fix Code for hands-on coding
support, General Question and Explain Code for conceptual under-
standing, and Question from Code as a versatile assistance covering
both areas. Each feature was carefully designed to produce help-
ful responses while not directly generating code solutions. In this
section, we focus on CodeAid’s initial design and architecture. The
system went through a major update based on midterm feedback
during its deployment which is described later in Section 5.
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Figure 1: The primary input interface of CodeAid. Users select a feature from the bottom right; this choice activates the relevant
input fields (code or question). After inputting their query, users press ’ask’ and wait for the LLM to respond.

The interface consists of an input to pose questions and an out-
put to display past responses. The input section (Figure 1) features
an input text box, a code input with syntax highlighting, and a
radio button group to select from one of the features. A student
first selects a feature, enters input (like a function-related ques-
tion), and hits submit. CodeAid then displays the response using
UI elements specific to the selected feature. A section on top of the
main input area provided pop-up videos to explain each feature. We
also displayed a disclaimer to make sure students understand that
the responses are generated by an AI language model and it might
generate responses with excessive confidence or be incorrect.

3.1 Primary CodeAid Assistance Features
To control the output produced by the LLM and prevent displaying
any code solutions to students, we employed few-shot learning
as described in [8]. We provided input/output example pairs to
define the overarching format of the LLM’s output. This enabled
us to confine or restrict code generation, and to add interactive
components to the response. This section introduces the design
and behaviour of each of the main assistance features.

3.1.1 GeneralQuestion. General Question The most basic fea-
ture in our system was generating answers to programming ques-
tions, specifically conceptual C programming questions. When a
user selects General Question, the code editor will become disabled
indicating that the AI will only consider the question input. For
generating the response, we used few-shot learning to generate
short answers with informative explanations. See Figure 3a for
more details about the prompt design for this feature. The response,
displayed in Figure 2a, was limited to natural language, although
sometimes included inline code (such as a function prototype), but
no multi-line code.

3.1.2 Inline Code Exploration. Inline Code Exploration In
each of the primary five features, responses or explanations often
contain C programming keywords (such as functions). To provide
opportunities for learning, we displayed these keywords in a dif-
ferent style. With this feature, students can hover over a keyword
for further exploration: generate sample code about that keyword,
generate documentation, or ask a question about the keyword. In-
voking any of these three options, will generate an Inline Code
Exploration response which is displayed in Figure 2e.

3.1.3 Question from Code. Question from Code To simulate
an experience similar to StackOverflow’s Q&A forum, we designed
the Question from Code feature to help students with debugging
tasks or conceptual questions in a specific context. The UI for this
feature looked similar to the General Question feature but with the
added ability to provide some code as context (Figure 2b). Both
the code editor and the question input became enabled when this
feature was selected.

3.1.4 Help Fix Code. Help Fix Code To help students in their
code debugging tasks, students could enter their buggy code in the
code editor and the intended behaviour or the problem of the code
in the question input (which displayed "Intended Behavior" as its
title when this feature was selected). The initial version of the Help
Fix Code feature (Figure 2d) performed two tasks in the backend:
first, it attempted to generate the correct version of the provided
code based on the given description, and second, it tried to explain
using bullet points what was changed and why (see Figure 3b for
more details). The response interface (Figure 2d) only displayed the
bullet points and not the fixed code as a way to not reveal direct
code solutions.

3.1.5 Explain Code. Explain Code To help students in use cases
such as understanding starter code used in assignments or code
taught during lectures, we designed the Explain Code feature (Figure
2c). Upon selecting this feature, the code editor would be enabled
and students could paste in code they wanted to be explained. The
generated output was an interface that displayed the users’ code
and enabled them to hover over each line to see the detailed ex-
planation for that line and how the line works in orchestration
with the rest of the code. To do this, we used a few-shot learning
approach and conditioned the model to produce a simple output
structure of generating the same code but with an explanation as
a specially formatted comment at the end of each line (see Figure
3c to see the structure of the prompt). This enabled us to show the
explanations directly to their matching code.

3.1.6 HelpWrite Code. Help Write Code Priorwork has shown
LLM-based code generators to provide great starting points for
programmers [58]. Therefore, to assist students struggling with
coding tasks, we wanted to provide ways to help them to write
code without displaying any code. For that, the Help Write Code
feature (Figure 2f) required users to enter the intended behaviour



CodeAid: Design and Semester-Long Deployment of an LLM-based Programming Assistant CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 2: The initial interface for the responses produced by CodeAid’s five primary functions, along with the Inline Code
Exploration feature.

of the program and generated a high-level structure of the code
with sub-goals [40] and pseudo-code in natural language. We used
few-shot learning to ensure that the generated output included
information about C library functions (e.g. for memory allocation
or system calls) while not including any code.

3.2 System Architecture
CodeAid is written in TypeScript and has a client-server archi-
tecture that enables user authentication and storing responses,
collecting feedback, and communicating with OpenAI APIs for gen-
erating responses. The server is implemented using Node.js, specifi-
cally: Express.js for REST API used in client-server communication,
Mongoose to interact with a cloud-based instance of MongoDB for
storing user data and generated responses, Passport.js for user au-
thentication, Socket.io for streaming data from OpenAI into the
backend (to be stored in the database) and parsed for the client to
be displayed in the UI. The client-side code was developed using
the React Framework.

For user input, we included a textbox and an instance of the
Monaco Editor that provided syntax highlighting for C program-
ming. These two inputs were selectively enabled or disabled based

on the selected feature to indicate which one the user needs to fill
in. After users entered the required text for a question and clicked
on the generate button, the LLM started streaming output to the
backend. The backend simultaneously parsed the response and
streamed it to the client. Once the stream finished (e.g. after reach-
ing a specified stop token in the stream), the backend stored the
entire response in the database and signalled the client about the
finished stream.

The system was instrumented with the Hotjar [23] user be-
haviour analytics tool that provides heatmaps and anonymous
session recordings. We also developed an admin dashboard for
the course instructor and the researchers to monitor anonymized
students’ usage and the associated AI-generated responses.

3.3 Prompt Design
Our prompt engineering consisted of mainly few-shot training, in
which at least one input/output example was provided for each
prompt. We carefully designed prompts to ensure responses (i)
follow structured, and easy-to-parse templates, (ii) are technically
correct, and (iii) use a style, tone, and level of technicality that is
both helpful and not overwhelming for students. For example, in
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Figure 3: The structure of LLM prompts used in the initial version of General Question, Help Fix Code, and Explain Code.

refining the Help Fix Code feature, we moved from generating a sim-
ple bullet-pointed suggestions to first generating the correct code,
followed by suggested fixes. This significantly improved suggestion
quality and accuracy. Similarly, in the updated system, we adopted
a pseudo-code style that balances between not overly revealing the
code’s syntax and not being too close to natural language, which
might be too long and overwhelming. Furthermore, the initial sys-
tem used the code-davinci-002 GPT-3 model, but was updated
to the gpt-3.5-turbo GPT-3.5 model in the updated system. The
structure of the prompts used in the General Question, Help Fix
Code, and Explain Code features of the initial version of CodeAid is
illustrated in the Figure 3.

4 SEMESTER-LONG CLASS DEPLOYMENT
To gain a comprehensive understanding of students’ usage of CodeAid
and the AI’s generated responses in an authentic learning envi-
ronment, we deployed CodeAid in a semester-long programming
course, with over 700 students, at a large North American univer-
sity. All students had optional access to CodeAid as an additional
resource throughout the semester. Our study, which included the
use of an AI tool, interviews, and weekly surveys, was approved by
our institute’s ethics review board prior to deployment.

4.1 Course Structure
The second-year course focused heavily on C programming, and in-
cluded topics such as shell programming, file processing, processes,
signals, system calls, and basic network programming. Prerequi-
sites of the course include a software design course taught in Java
and introductory programming using Python. To accommodate
the large 700-student class, the course was split into four lectures
segments. Students were required to watch specific videos and
complete weekly preparation exercises by a set deadline before
each lecture. The course included ten lab exercises (worth 1% each),
four programming assignments (A1 to A4, worth 39% in total), a

midterm test (worth 10%), and a final exam (worth 40%). To incen-
tivize responding to the weekly surveys about CodeAid, a 0.1%
grade was attributed to responding to each of the ten surveys. This
grade was based on completing the surveys, regardless of students’
consent to participate in our study. Course policies allowed the use
of CodeAid, but explicitly forbade the use of other AI tools (such as
ChatGPT) to complete any coursework. Students were also asked
to cite any external sources that they used for their work. Students
in the course had access to a variety of resources beyond CodeAid:
recorded lecture videos, lecture notes, an online Q&A discussion
board moderated by the instructors, and weekly office hours with
teaching assistants and course instructors.

4.2 Deployment and Participants
To ensure ethical integrity and avoid any perceived pressure, stu-
dents’ engagement with CodeAid, weekly surveys, and interviews
in our study was entirely voluntary and confidential from course in-
structors. The researchers informed the instructors only at the end
of the semester about who had completed the surveys, which con-
tributed 1% to the course mark, without revealing the participants’
consent status. Students’ consent was obtained through the first
weekly survey, where they selected from three options: consent to
share their CodeAid data for research, participate in surveys for
the grade without data sharing, or opt out of surveys, foregoing a
potential 1% grade increase. Out of all, 563 (80%) students consented
to participate and share their data for our analysis.

Of the 563 participants, 318 (56%) reported their gender identity
as man, 170 (30%) woman, 4 (1%) non-binary, and 71 (13%) preferred
not to say. In terms of English proficiency, 515 (91%) students agreed
or strongly agreed that they are comfortable reading English. In
terms of program of study, 418 (74%) were enrolled in a Computer
Science major program, 81 (14%) were enrolled in a Computer Sci-
ence minor program, and 64 (12%) the rest were in other programs.
In terms of prior knowledge about C programming, 348 (62%) stu-
dents disagreed or strongly disagreed about being competent in
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Table 1: The sub-dimensions from our thematic analysis, their associated codes, and inter-rater reliability metrics using Cohen’s
Kappa and percentage agreement. The detailed codebook is provided in Appendix A.

Sub-Dimensions Codes Inter-Rater Reliability

What are students asking from CodeAid? Code and conceptual clarification, Function-specific queries,
Code execution probes, Buggy code resolution, Problem source
identification, Error message interpretation, High-level coding
guidance, and Direct code requests

88% (𝜅 = .85)

How much is CodeAid directly revealing
the solution?

Specific code, Specific pseudo-code, Example high-level code,
Example high-level pseudo-code, Steps to fix syntax issue, Steps
to fix semantic issue, No-code conceptual explanation

94% (𝜅 = .92)

How technically correct is the response? Correct, Incorrect 87% (𝜅 = .62)
How helpful is the response if correct? Helpful, Not helpful 82% (𝜅 = .61)

C programming before the course, while 57 (10%) students agreed
or strongly agreed. Students were invited to use CodeAid through
several email announcements throughout the semester.

4.3 Data Sources
To gather a comprehensive understanding of student and educator
experiences and interactionswith CodeAid, we employed amultifac-
eted data collection approach including CodeAid’s interaction logs,
ten weekly feedback surveys, an anonymous post-course survey
(administered after final grade submissions), and semi-structured
interviews with 22 randomly sampled students.

4.3.1 CodeAid Usage and In-situ Feedback. A primary data source
for understanding students’ usage patterns (RQ1) and the assis-
tant’s response quality (RQ2), was CodeAid’s activity logs. Log data
has become an important data source to understand programming
experiences [6] and coding approaches [17, 25], particularly when
interacting with LLMs [27, 28]. For each question asked by students,
we closely examined its content and CodeAid’s generated responses
through a thematic analysis described later in this section. To better
understand the usefulness of the AI-generated responses (RQ2),
CodeAid prompted students with a mandatory question that asked
"How useful was this response?". Students had to respond to a 5-
point Likert scale (displayed as a rating stars) and optionally type
a reason for their rating before they could use the system again.
For each feature, we analyzed the ratings and grouped the reasons
into positive and negative feedback to better understand students’
perceptions.

4.3.2 Weekly Research Surveys. To understand how students used
CodeAid in comparison to traditional educational resources and
ChatGPT (RQ3), we conducted a weekly online survey. These types
of surveys have aided researchers in monitoring students’ percep-
tions towards AI agents [61]. Similarly, we asked students to report
their comparative usage of multiple resources including lecture
videos, lecture notes, Q&A discussion boards, office hours, and
CodeAid. We also asked questions about why they did or did not
use CodeAid, how useful they found it, what they liked or disliked
about the tool, and any open-ended feedback about CodeAid during
the last week of the course.

4.3.3 Semi-structured Interviews with Students. To gain deeper in-
sights about how students used CodeAid (RQ3), we conducted confi-
dential interviews with 22 randomly selected participants, ensuring
their privacy from the instructors. Eight interviews were conducted
halfway through the course (after students had used CodeAid for A1
and A2), and 14 interviews were done after the course was finished
(after their final exams). After obtaining informed consent, our in-
terview questions addressed productivity enhancement, shifts in
workflow, verifying responses and reliability, usability concerns,
learning moments with CodeAid, and contrasts with alternative
resources like StackOverflow, a moderated Q&A discussion board,
and other websites. We concluded the interviews with a short co-
design activity, involving students as collaborators in envisioning
and shaping future iterations of CodeAid. This approach effectively
gathered their unique ideas and suggestions for features tailored to
educational settings. Each interview lasted approximately an hour
and every participant was compensated with a $25 gift card.

4.3.4 Post-Course Anonymous Survey. Since course policy prohib-
ited the use of code generated from AI tools like ChatGPT to com-
plete any course work, we conducted an anonymous survey to
determine whether and why students used ChatGPT. Our goal was
to gain a holistic view of students’ perceptions of AI assistants in
large classes (RQ3). The survey further explored the frequency of
their engagement with ChatGPT in comparison to CodeAid.

4.4 Thematic Analysis
To gain deeper insights into how students interacted with CodeAid
and the quality of the AI-generated responses, we performed a
thematic analysis on the usage logs. From a total of 8132 usages, we
initially removed those from students who did not agree to partici-
pate in the research, leaving 7003 data points. We then randomly
sampled 2100 data points (30%) and then removed usages that were
unrelated to the course (n=71) were excessively long (n=133), or in
which CodeAid encountered a technical error (n=82). We were then
left with 1750 (25%) usages, on which we performed the thematic
analysis and report our results.

We created two high-level code dimensions to answer our re-
search questions: (i) to understand usage patterns, choice of features,
and the nature of questions posed (RQ1), we focused on the User
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Query (including any provided code or error logs), and (ii) to eval-
uate the quality of the AI-generated responses (RQ2), we focused
on the CodeAid Response. This enabled us to focus on relevant
data for each of the sub-dimensions in our thematic analysis in the
following rounds of analysis [4].

Under each of the two dimensions, we applied an inductive ap-
proach where two researchers read through 100 randomly sampled
data points together and allowed codes to emerge during the process
[4]. The process involved familiarizing themselves with the data,
specifying sub-dimensions, and then creating codes for each sub-
dimension. The two researchers then independently coded another
120 randomly sampled data points using the initial codebook. Next,
they discussed the results from the initial coding, resolved conflicts,
and further refined the codebook. During this step, they presented
the codes and representative usages to the course instructor and
incorporated their feedback. To enhance the generalizability and
reliability of our findings, we streamlined our coding definitions.
For instance, responses with minor inaccuracies were labelled as
"incorrect". Similarly, if responses that were categorized as "correct"
failed to adequately address the query, were irrelevant, repetitive,
or exceeded the scope of the course material, they were labelled as
"unhelpful".

After refining the codebook 1, the two researchers independently
coded 200 data points and used Cohen’s Kappa and percentage
agreement [43, 47] to compute the inter-rater reliability for each of
the sub-dimensions. After removing low-quality sub-dimensions,
addressing disagreements, and finalizing the codebook, the two
researchers independently coded a total of 1430 additional data
points selected at random from the remaining untagged data. The
full codebook can be found in Appendix A.

5 MIDTERM FEEDBACK AND SYSTEM
ITERATION

Midway through the course, following the completion of half the
major assignments, we conducted semi-structured interviews with
eight randomly selected students and analyzed five of the weekly
research surveys. This feedback was used to derive any needed
iterations to the design of the tool.

The feedback highlighted numerous aspects of CodeAid that
students appreciated: clear explanations of code or complex top-
ics, assistance in identifying errors, constant availability, direct
and personalized engagement compared to online searches and
documentation, and the flexibility to ask diverse questions. How-
ever, our analysis also pinpointed several areas where CodeAid
could be improved. Specifically, students felt that the responses
they received were often too brief and lacked in-depth informa-
tion, example usage code, or associated documentation. There were
also concerns about incorrect answers or misleading suggestions
for fixing their code. Another common frustration was the slow
response time of the platform. Students pointed out the importance
of the "Help Fix Code" feature, but suggested that it should provide
specific line numbers where errors were detected. Furthermore,
students expressed the need to ask follow-up questions beyond the
"General Question" feature. Lastly, during the co-design phase of
our interviews, students emphasized the need for seamless access
to documentation for functions mentioned in CodeAid’s responses.

5.1 System Updates and Enhancements
In response to the feedback received during our initial evaluation,
and after in-depth discussions with the course instructor, we im-
plemented several updates to CodeAid.

5.1.1 Pseudo-Code Integration. As a way to provide more com-
prehensive responses and to increase engagement, we decided to
add pseudo-code generation to most of the features (Figure 4b).
We used pseudo-code as a form of scaffolding, offering a simpli-
fied and structured outline of a program, which serves as a bridge
to actual coding without directly revealing the code itself [32].
To enable this functionality, we updated our LLM prompts for all
features to ask the model to generate code. However, instead of
showing this code to the user, we sent it to a new LLM function
that generated the pseudo-code. For line-by-line explanations, the
new LLM function also included an explanation following each line
in the form: [pseudo-code] /// description of details . This
was then parsed and only the pseudo-code was rendered, while
the explanation would be displayed whenever the user hovers over
that particular line.

5.1.2 Displaying Function Documentation. Since the Inline Code
Exploration was underutilized, we removed it and instead updated
all of the features to display static (non-AI generated) documenta-
tion for functions that were relevant to the query. Students could
hover over the function buttons to see the detailed documentation
with usage descriptions and code examples (Figure 4d). We imple-
mented this by asking the LLM to always list all relevant functions
to the user’s query. To retrieve the documentation for each function,
we developed a local key-value database in which the keys were
function names and values were the documentation objects scraped
from the Standard C Library parsed into a JSON object.

5.1.3 Stream Generation. To address concerns over response de-
lays, we incorporated OpenAI’s stream generation mechanism for
CodeAid’s responses to provide immediate feedback. To achieve
this, we developed a specific markup for each of the features to
enable parsing the partially generated response as it was being
streamed. This enabled our system to immediately start displaying
responses after users clicked the generate button. For single-line
components such as generating a short summary for the provided
code, or responding with a single-line answer to an asked question,
our markup used the following format: [output-name]: <text> .
For multi-line components such as code parts, we used two to-
kens, [start-of-part] and [end-of-part] . Furthermore, in situ-
ations where the output of one LLM function was sent to another
LLM function in series (e.g. to generate the final pseudo-code from
code), our API did not show the generated code, but displayed (and
updated while streaming) the number of lines of code that were
generated.

5.1.4 Updated Prompts and OpenAI Model. We improved the Gen-
eral Question and Question from Code features to provide more
detailed and thorough answers by refining the few-shot prompt-
ing examples. To enhance the overall quality, accuracy, and reli-
ability of CodeAid’s responses, we upgraded the AI model from
code-davinci-002 to the more advanced gpt-3.5-turbo model.
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Figure 4: The redesigned interface for the responses produced by CodeAid after the midterm update: (a) redesigned Help Fix
Code, (b) the new interactive pseudo-code with line-by-line explanations, (c) suggested follow-ups, and (d) displaying relevant
function definitions.

We also updated the prompts to not respond to questions that were
not relevant to C programming.

5.1.5 Redesigned Help Fix Code. We redesigned the feature based
on feedback so that it would highlight the specific lines that require
modifications, deletions, or additions. To achieve this, we used a
data flow which is displayed in Figure 5. (1) Pre-processing: The
buggy code is stripped of any comments and is then reformatted
with a standard style. (2) Generating Fixed Code: An LLM func-
tion tries to generate the fixed version of the buggy code based
on the provided intended behaviour or error message. This step
also generates a paragraph of changes similar to the initial ver-
sion of the feature which is immediately streamed to the client
and displayed. (3)Matching Lines: A simple static code analyzer
matches each line of the fixed code to the original buggy code. (4)
Annotating Buggy Code: The buggy code is then annotated with
three labels: /// [changed] , /// [removed] , or a new empty line
with /// [added] . (5) Explaining Annotations: The annotated
buggy code and the fixed code are sent to another LLM function
that adds explanations to each of the changed, removed, and added

labels. Eventually, the explained changes and annotated code is
streamed to the client for rendering and displaying the highlighted
lines and on-hover interactions as displayed in Figure 4a.

5.1.6 Improved Follow-Up Questions. We redesigned the prompts
to add the capability for users to ask follow-up questions in the
Question from Code, Explain Code, and Help Write Code features,
thus improving the steering experience. Additionally, we integrated
suggested follow-up prompts (Figure 4c), inspired by the "did you
mean X instead?" suggestions commonly seen in search engines.

6 RESULTS
In this section, we answer the first three research questions based
on the overall usage of CodeAid throughout the entire semester.
Specifically, RQ1: students usage patterns of CodeAid, RQ2: effective-
ness of CodeAid in generating correct and helpful responses without
revealing solutions, and RQ3: students’ perceptions of CodeAid. We
synthesize results from various data sources: CodeAid interactions,
thematic analyses, interviews with 22 students (S1 - S22), and both
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Figure 5: Revised prompt design and system architecture illustrating the data flow of the General Question feature, highlighting
the process of generating pseudo-code and relevant function documentation.

Figure 6: a) Students’ self-reported average usage of various course resources over the course (based on the weekly surveys), and
b) CodeAid’s daily usage and unique user counts over the course of the 12-week semester highlight a spike in activity during
deadline periods (A 7-day average was applied to emphasize general trends).

weekly and end-of-semester anonymous surveys. Where quota-
tions came from student interviews we have indicated the subject
number (e.g. Sx). Unattributed quotations came from open-ended
questions on the weekly surveys.

6.1 RQ1: Students’ Usage Patterns and Feedback
During the course, 372 students engagedwith CodeAid, posing 8132
original and 1986 follow-up queries. From these, 300 students agreed
that their data could be used, which left us with 7003 original queries
and responses for analysis. Students, on average, inquired CodeAid
23.3 times (SD=41.2), spanning a range from 1 to a maximum of
333 questions per student. The majority of students (n=159) asked
between 1 and 9 questions, followed by 80 students who asked 10
to 29 questions, 28 students who asked 30 to 49 questions, and 34
students who asked more than 50 questions. Student engagement
surged approaching major assignment deadlines or exams (Figure
6b). The dataset of queries from consented students is available as
supplementarymaterial with this paper, offering a valuable resource
for those interested in advancing AI educational tools.

We analyzed the usage of CodeAid among different gender
groups, particularly the predominant self-reported gender cate-
gories. On average, those identifying as women used CodeAid 33.8
times, which was significantly more than those identifying as men,

with an average usage of 18.4 times (p=.004, d=.34, using an inde-
pendent samples t-test). This suggests that despite being underrep-
resented in the course (making up only 30%), women tended to use
CodeAid more frequently than men.

In terms of features, the General Question feature was used most
frequently, accounting for 38% (n=2682) of total usages, with 683
instances leading to 1412 follow-up questions. The Question from
Code feature followed at 28% (n=1959), leading to 187 follow-ups
from 108 usages. The Help Fix Code feature was used 1611 times
(23%). The Explain Code accounted for 5.5% (n=388) of usages and re-
sulted in 34 follow-up questions. Lastly, the Help Write Code feature
represented 4% (n=283) of usages, with 36 instances prompting 48
follow-up questions. Refer to Table 2 for a summary of descriptive
statistics that compare the usage count and usefulness rating of
features before and after the midterm update. Additionally, based
on the weekly surveys, students reported similar weekly average
usages of CodeAid and course office hours (Figure 6a).

In order to further explore students’ usage patternswith CodeAid,
we turn to our thematic analysis of the 1749 usages which revealed
four major types of inquiries: (i) asking programming questions, (ii)
debugging code, (iii) writing code, and (iv) explaining code. Students
used a combination of different features to perform the above in-
quiries. In the sections below we report the frequency, nature of
questions, and students’ choices of features.
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6.1.1 Asking ProgrammingQuestions. The most frequent type of
inquiry was programming questions with 36% (n=643) instances
from all thematically analyzed data. We classified student questions
into three categories: code and conceptual clarification 26% (n=453),
function-specification queries 5% (n=96), and code execution probes
5% (n=94). For code and conceptual clarification, students mostly
used the General Question feature (n=323), inquiring conceptual in-
formation about syntax, pointers, string operations, data structures,
input/output operations, system calls, shell programming, and com-
pilation tools. The Question from Code feature was also used (n=124)
to understand or clarify the role, behaviour, and details of particular
parts in their provided code snippets. For function-specific queries,
students mostly used the General Question feature, seeking insights
into a specific function’s usage, behaviour, arguments, and return
types. For code execution probes, students predominantly utilized
the Question from Code feature (n=83), and occasionally the General
Question for shorter code snippets (n=10). They used CodeAid simi-
lar to a compiler to verify execution, evaluate output on particular
inputs, and check for errors.

6.1.2 Debugging Code. The secondmost frequent usage of CodeAid
was to debug code (32%). We discovered three major types of in-
quiries: buggy code resolution 22% (n=385), problem source identifi-
cation 7% (n=130), and error message interpretation 3% (n=50). For
buggy code resolution, students predominantly used the Help Fix
Code (n=385) by providing their erroneous code, its intended be-
haviour, and sometimes, the encountered error message. Students
also used Question from Code (n=60) by providing their erroneous
code and asked how to fix the error. For problem source identifica-
tion, students used Question from Code and specifically asked about
why they were getting an error (n=108). Similarly, they used the
General Question (n=16) but for smaller contexts (e.g., one line of
codes, or shell programming commands), or by mistake (e.g., for-
getting to include their code by not using Question from Code). The
most common type of inquiry here was to understand functional
inconsistencies such as unexpected outputs, behaviours, warnings,
and specific error messages. Students were seeking explanations
for why their code behaved differently than expected (e.g. "why
does my truncate function not change str?"). Lastly, for error mes-
sage interpretation students used Question from Code (n=34) and
General Question (n=11) to understand syntax errors, Valgrind’s
memory-related error summaries, and command-line errors.

6.1.3 Writing Code. The third most common usage of CodeAid
was assisting with writing code (24%). Students were asking for
high-level coding guidance 13% (n=237), or direct code solutions 10%
(n=185). In the context of seeking high-level coding guidance, our
thematic analysis reveals that students predominantly utilized the
General Question feature (n=206), followed by Question from Code
(n=19) and Help Write Code (n=13). Typical inquiries were charac-
terized by "how-to" questions, where students sought information
on appropriate functions for specific tasks, such as "how to get the
length of a string?", or step-by-step guidance on specific behaviours,
like "How do you check if a file exists?". When asking for direct code
solutions, students used General Question (n=73), followed by Help
Write Code, and Question from Code (n=39).

6.1.4 Explaining Code. Lastly, students used CodeAid to explain
the starter code that was provided to them by the course staff 6%
(n=97) using the Explain Code feature.

6.2 RQ2: CodeAid’s Response Quality
This section reports results from the thematic analysis regarding
correctness, helpfulness, and the extent to which responses directly
revealed code solutions. Additionally, we report student ratings
regarding usefulness and their reasons corresponding to high and
low ratings.

6.2.1 Overall Correctness and Helpfulness. Based on our thematic
analysis of 1,749 random samples, we found that the correctness
rate was 79% (1,386 correct instances) and the helpfulness rate was
86% (1,196 out of 1,386). Notably, after updating CodeAid, there
was an improvement in the quality of responses. Correctness of
responses increased from 74% (781 out of 1,057) to 87% (603 out of
692), and their helpfulness rose from 83% (646 out of 781) to 91%
(550 out of 603).

6.2.2 Not Displaying Direct Code Solutions. The assistant succeeded
in avoiding the display of direct code solutions. In response to 43% of
queries, CodeAid produced purely natural language answers which
included conceptual explanations. For 24% of queries, it produced
pseudo-code, of which 16% were high-level and generic example
codes, while 6% were the pseudo-code that implemented a specific
behavior. These specific pseudo-codes, although indirect, might
have revealed the high-level ideas about implementing a particular
behavior that was required in an assignment. Furthermore, when
debugging code using CodeAid, it never displayed the fixed code
and only recommended suggestions to fix minor syntax errors (16%)
and semantic issues (8%). Similarly, the Help Fix Code never gener-
ated any code. However, the initial version of General Question and
Question from Code produced generic, high-level example code in
104 instances (6%) which did not directly implement any part of
assignments and were similar to what students can find on websites
like Stack Overflow. Finally, in 37 instances (2%) these two features
generated a short code solution (1-3 lines) to a specific behavior.

6.2.3 General Question. Our thematic analysis of 733 randomly
sampled usages of theGeneral Question feature revealed 91% (n=668)
correct and 84% (n=613) helpful responses. Based on student ratings,
the feature’s usefulness was rated highly at 4.04 (SD=1.30) on a 5-
point scale. Reasons associated with highly rated responses tended
to report that the response was "correct", "helpful", "concise", and
"clear", as evidenced by comments like "explainedmymisunderstand-
ing perfectly". Conversely, when giving negative ratings, students
tended to report that they were due to (i) incomplete or superfi-
cial explanations, (ii) the absence of example code, (iii) irrelevant
or unclear responses, or (iv) incorrect or misleading information
especially with more complex requests.

6.2.4 Question from Code. Our thematic analysis of 467 randomly
sampled Question from Code usages revealed a slightly lower accu-
racy, with 66% (n=310) being correct and 55% (n=258) helpful. The
average rating for the usefulness of this feature’s responses was
3.28 (SD=1.57). Comments that correlated with highly-rated usages
included reasons such as: (i) precisely identifying and locating er-
rors in code, exemplified by feedback like, "I had been staring at



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Kazemitabaar, et al.

Table 2: Summary of usage count and average usefulness ratings for each feature, broken down by version (V1: pre-midterm
update, V2: post-midterm update)

Feature Type Count V1 Rating V1 Count V2 Rating V2
General Question 1648 𝑀 = 3.99, 𝑆𝐷 = 1.34 1034 𝑀 = 4.10, 𝑆𝐷 = 1.32
Question from Code 1526 𝑀 = 3.28, 𝑆𝐷 = 1.57 433 𝑀 = 3.27, 𝑆𝐷 = 1.57
Help Fix Code 1348 𝑀 = 2.88, 𝑆𝐷 = 1.61 263 𝑀 = 2.38, 𝑆𝐷 = 1.51
Explain Code 296 𝑀 = 4.19, 𝑆𝐷 = 1.26 92 𝑀 = 4.16, 𝑆𝐷 = 1.15
Help Write Code 98 𝑀 = 3.38, 𝑆𝐷 = 1.62 185 𝑀 = 3.25, 𝑆𝐷 = 1.52

the code for so long. sometimes you just need an extra set of eyes.",
(ii) providing detailed and accurate answers, and (iii) confirming
that the code compiles correctly. Student comments associated with
lower ratings mentioned reasons like (i) being incorrect, incomplete,
or suggesting redundant code changes, (ii) vaguely and poorly ex-
plaining responses, and (iii) CodeAid’s inability to understand the
code the student had provided.

6.2.5 Help Fix Code. Our thematic analysis of 340 instances ofHelp
Fix Code indicated 63% (n=214) correct responses, with 42% (n=142)
that were deemed helpful. The average rating of this feature was
lower than other features at 2.67 (SD=1.55). Looking at the in-situ
feedback, when students rated this feature highly, they mentioned
reasons such as providing helpful fix suggestions, correctly explain-
ing errors (e.g., "it did a good job of explaining what was wrong"),
or confirming the absence of errors and suggesting external issues.
However, the feature was occasionally deemed not useful. Lower
ratings were often associated with feedback that pointed out inac-
curate or irrelevant suggestions or misinterpretations of the code’s
intent. Several students reported in the weekly surveys and inter-
views that they favoured the updated visual annotations for this
feature and mentioned "now I can see where to fix the code," and
"it highlights areas I can fix in red, which is visually very helpful".
However, they also reported challenges for more complex coding
tasks introduced at the end of the course. One participant (S21)
reported CodeAid became "more difficult to use for longer codes" and
could not understand the "interactions between multiple files."

6.2.6 Explain Code. From the thematic analysis of 95 randomly
sampled Explain Code usages, we discovered that 95% (90 out of 95)
of the explanations were accurate and perceived beneficial when
theywere correct. In terms of usefulness rating, the featurewaswell-
received by students, obtaining an average rating of 4.17 (SD=1.21).
Highly rated responses of this feature were linked to reasons such
as being "accurate", or providing "a useful breakdown of the code" as
well as helping them in code review and double-checking their code.
Reasons that correspond to lower ratings mentioned explanations
being "inaccurate", "too short", or that it "did not tell anything new
about the code"

6.2.7 Help Write Code. From the thematic analysis of 77 instances
of Help Write Code, the feature predominantly produced correct
(92%) and helpful (82%) responses. In 53% of cases, CodeAid gener-
ated the exact solution of a requested behavior and in 32% (n=25)
it generated pseudo-code for a high-level example. The feature
received an average usefulness rating of 3.29 (SD=1.56). Several
students that rated the feature highly, tended to report that the

feature was useful in initiating coding tasks by breaking it into
smaller bits. Responses that were poorly rated included reasons
such as generating incomplete or irrelevant answers.

6.3 RQ3: Students Perspectives and Concerns
This section presents students’ experiences with CodeAid across its
spectrum, and broader perspectives on AI programming assistants.

6.3.1 Accessibility and Convenience. Many students appreciated
CodeAid’s 24/7 availability, with one noting, "I like that it’s always
there if I need any help." They highlighted the private space it offers
where they can "ask a lot of questions" without "having to talk to a
human who will judge" them. Students highlighted CodeAid’s role
as a crucial supplementary resource to assist with coding tasks,
with a student commenting, "It helped me solve issues with my code
that I wouldn’t have been able to figure out on my own."

6.3.2 Contextual Assistance. Students appreciated CodeAid’s abil-
ity to provide "faster access to relevant knowledge" by offering con-
textually relevant assistance and "specific solutions" that are "more
concise." They compared CodeAid to search engines where they
"can’t paste code into," and mentioned "I like that I can word ques-
tions how I think about them rather than thinking about what the
header of the most relevant stack overflow post will be." Students
found CodeAid’s responses tailored to the context of the course
requirements, with S10 highlighting that "CodeAid was more related
to our course, ChatGPT sometimes used functions that were not used
in the course." Negative experiences included when "the AI did not
understand what [they] asked" in which they had to search online
(S12, S13), or the limits placed on input length.

6.3.3 Learning and Dependency. Some students expressed that
CodeAid has deepened their understanding, noting it "explains
things more deeply for someone who is trying to learn" (S9) and of-
fers "a new way to learn code." However, some students preferred
indirect responses to enable deeper engagement: "I would like a
hint rather than the answer." Although some students like S14 felt
that they "over-relied on it too much rather than thinking", many
students displayed signs of self-regulation. They "never tried to get
the system to show the solution" (S2), "did not use the fix code feature"
(S4), or "ask[ed] too general questions" (S7) so they could learn.

6.3.4 Trust and Reliability. Many students recognized CodeAid’s
utility, comparing its accuracy to Teaching Assistants: "80% accu-
rate answers, similar to TA." Students acknowledged the utility of
CodeAid’s assistance in specific contexts, finding it more accurate
on simple questions. Some pointed out CodeAid’s confident tone
when producing wrong answers, as noted by a student: "it can lie
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to you, and still sound confident." In terms of trust, some found it
superior, noting it seemed "like a person who knows everything,"
while others expressed that they "don’t trust a computer to give
[them] accurate responses." Of interest, S13 noted that they trusted
CodeAid more than Google, "just because it was part of the course"
and endorsed by the instructor.

6.3.5 Reasons for Not Using CodeAid. Several themes emerged
when students explained instances when they did not use CodeAid.
The primary reason was a perceived "lack of need," as many found
existing course materials "sufficient" or the coursework easy. Some
were either unaware of CodeAid or forgot to use it. Students also
cited a preference for existing resources like GDB debugger, Stack
Overflow, and Q&A discussion boards. A few favoured ChatGPT’s
GPT-4 version for its ease and versatility. Personal desire for self-
reliance was also a reason, with statements like "I enjoy finding
solutions by myself". Skepticism towards AI-generated content and
past negative experiences also reduced trust in the tool. Some stu-
dents preferred to consult friends, and several students mentioned
the mandatory feedback as a reason for not using CodeAid.

6.3.6 Comparing CodeAid with ChatGPT. We conducted a fully
anonymous post-course survey to ask students about their usage
of ChatGPT during the course, despite the course policy to avoid
its use. Of the 200 respondents, 23% exclusively used CodeAid, 38%
used both CodeAid and ChatGPT, and 19% only used ChatGPT.
The number of students who used ChatGPT "sometimes," "often,"
or "a lot" was 90, compared to 66 students for CodeAid. Among
the reasons for not using ChatGPT were satisfaction with existing
resources, concerns over academic integrity, and doubts about its
reliability. Comparatively, students appreciated ChatGPT’s user-
friendly interface, greater character limit, and free-form editing.
They found it useful for handling complex inputs with "multiple
parts" and "using any format". ChatGPT was favoured for offering
in-depth code reviews, generating more comprehensive answers,
and producing code examples. When it came to learning about C
programming concepts, students who used both tools reported a
higher learning experience with ChatGPT. However, some students
that used ChatGPT expressed that the direct solutions generated
by ChatGPT was "not good for learning" (S10) or that "ChatGPT
sometimes does a bit too much". Similarly, S21, "I don’t think that
I’m learning as much as spending time to fix [the code] myself."
Conversely, students felt that they learn more using CodeAid "since
it’s targeted towards CS students and explanations are more technical
and they do make you think".

6.3.7 Future Integration of AI Coding Tools. Most students reported
that they will continue using AI coding tools, expressing that AI
helps them "work more efficiently," and understand coding concepts
in a summarized way. Several envisioned using AI to "create the
skeleton code" of their projects, "optimize [their] code," and handle the
"tedious programming tasks that are not too complicated" for them.
Others wished to have these tools integrated into their coding
environment. One student was eager to take "a class about writing
prompts to get more accurate answers." However, some students
did not want to integrate AI coding tools in the near future. One
mentioned limitations such as not being effective in debugging
"without seeing the entire program," and another student mentioned

that AI should not be used for learning due to its "confident but
incorrect answers" and "that it does not encourage learning." Lastly, a
student highlighted the essence of learning as "figuring things out
on your own by googling, manually fixing bugs, looking at tutorials,
etc."

7 EDUCATOR INTERVIEWS
To gain further insights into how educators would use CodeAid
in their programming classes, we conducted semi-structured inter-
views with eight computing educators (T1 - T8). Educators were
from six countries, including Germany (T6), India (T1), Jordan (T3),
New Zealand (T2), the Netherlands (T8), and the USA (T4, T5, T7).
These educators were actively engaged in teaching undergraduate-
level programming courses. Six of them (T1, T3, and T5-T8) had
over ten years of teaching experience, one had 5-10 years (T2), and
another had 3 years (T4). Most were also engaged in computer
science education (CSEd) research. The interviews began by ex-
ploring the educators’ backgrounds and their current challenges
and strategies, especially around students’ utilization of LLM-based
coding tools like ChatGPT and Github Copilot. Subsequently, we
introduced our pedagogical AI coding assistant, discussing its capa-
bilities and insights gathered from our semester-long deployment
as summarized in Section 6. The conversation then shifted to the
educators’ opinions on our tool: what they liked and disliked, their
pedagogical and ethical considerations regarding its use, their inter-
est and requirements for integrating it into their courses, and how
they perceived it relative to tools like ChatGPT. Each interview, for
which informed consent was obtained, was conducted over Zoom
and lasted approximately one hour.

7.1 RQ4: Educator’s Perspectives
Educators expressed varying degrees of concern about the impact
of AI coding tools like ChatGPT on the classes they taught. While
T5 didn’t see ChatGPT as a significant issue for advanced Computer
Science courses, there was a general agreement about its potential
threat to introductory programming classes. Notably, T1 mentioned
"I would encourage students to use a tool that respects that there’s a
learner at the other end, not ChatGPT".

7.1.1 General Impressions. Educators generally held favourable
impressions of CodeAid. T3 emphasized CodeAid’s pedagogical
approach, stating that it offered an "honest way of using ChatGPT,",
particularly for students keen on academic integrity. Similarly, T4
mentioned that CodeAid was "the most sensible path" and a safer
alternative to "a completely unsafe and unmoderated" tool like Chat-
GPT. Similarly, T5 compared CodeAid to an "excellent TA" that
prompts students to think critically rather than offering direct an-
swers. Furthermore, T2 envisioned that CodeAid can greatly assist
students in a flipped classroom setting, help students arrive at class
more prepared, offer moments for self-reflection on lecture material,
and support them in tackling assignments.

7.1.2 Perceptions on Pseudo-Code Usage. Most educators appreci-
ated the design of the pseudo-code feature, especially the line-by-
line on-hover explanations. T6 liked the way it "provides structure"
without "giving away the difficulty of the syntax." Similarly, T2 and
T4 mentioned how it reduces cognitive load by focusing on overall
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logic. T4 expressed that "hiding the syntax" helps with students’
meta-cognitive skills. From an ethical standpoint, T1 claimed that
showing pseudo-code was even "better than Google" for certain
queries, as opposed to viewing "precise solutions available on Stack
Overflow". However, T3 expressed slight concerns, particularly for
upper-level courses, where revealing the algorithm via pseudo-code
would be detrimental.

7.1.3 Concerns about Incorrect Responses and Misuses. Despite
positive impressions, educators expressed various concerns. After
viewing the results from our thematic analysis, T1 pointed out
the risk of incorrect responses, especially for students whose fun-
damentals are poor. T3 raised concerns about students "trusting
whatever the AI says". T1 suggested that these tools should "build up
students’ ability to critique" LLM-generated responses. As a solution,
T1 and T3 suggested including mandatory tutorials with quizzes
before students can use CodeAid. T5 asked for more transparency
by having CodeAid display recent incorrect responses for each of
the features. T3 mentioned that the inaccuracies of the Help Fix
Code feature could mislead students by highlighting incorrect lines,
and suggested the feature could instead highlight potentially in-
correct lines and ask self-reflective questions from students like
"Are you sure this line is doing [X]?". Additionally, T1, T4, T6, and
T7 voiced worries about misusing or abusing CodeAid through
repetitive queries and suggested throttling usage as a potential
solution.

7.1.4 Keeping Students from Switching to ChatGPT. Many educa-
tors felt that CodeAid should be designed in a way to keep students
from switching to ChatGPT which "was just a click away". T7 men-
tioned that "I can’t prevent students from using ChatGPT, but if I
can get more students to use this tool instead of ChatGPT, then that’s
better". As a way to attract students, T2 suggested "creating an
all-encompassing tool". Similarly, T7 and T8 suggested including a
complete code editor with code execution capabilities to make it
easier for students to remain engaged with CodeAid rather than
defaulting to ChatGPT. Another recurring suggestion was revealing
code solutions after multiple failed attempts to prevent frustration.
For example, T1, T2, and T5 proposed gamifying the experience such
as "showing code could cost them some kind of points in the system"
or T7 mentioned to "lock the system" after showing code, asking
the student to do something useful like explaining the answer. How-
ever, T3 strongly favoured CodeAid’s pedagogical approach and
did not want CodeAid to reveal code solutions, asserting that "if a
TA is controlled to answer in an appropriate way and not show the
solution, then this tool should also be controlled". When discussing
the ability to customize CodeAid’s responses during a course, T4
was confronted with the dilemma that if they turned off a feature,
then students might default to ChatGPT.

7.1.5 Pedagogical Customization. A recurrent theme centred on
the importance of customization by instructors. Both T3 and T4
emphasized the need for instructors to have control over the types
of responses generated by CodeAid for different types of questions.
Specifically, T3 wanted CodeAid to produce pseudo-code only for
implementation questions, and to merely offer hints for problem-
solving questions. On the other hand, T4 wanted to control when
pseudo-code was displayed and only enable it at the beginning of

the course. T7 wanted to update CodeAid with a list of topics that
have been taught in class so that it would not use other complex
topics and functions when responding to students’ queries.

7.1.6 Student Monitoring Dashboard. Another prevalent theme
was the need for instructor dashboards that monitor student in-
teractions and track their queries. T2 highlighted that by tracking
students, we can see what type of questions they are asking, and
what type of answers are being produced. This data could help
educators in identifying gaps in their instruction, as evidenced by
frequently asked questions. Such insights might prompt them to
"step in and provide better examples". However, this monitoring
comes with its own set of challenges. While T6 suggested aggre-
gated data could provide feedback, accessing individual data might
be restricted due to regulations such as the General Data Protection
Regulation (GDPR). This poses a question on the balance between
personalization and privacy. Lastly, T8 mentioned a crucial point
concerning student anonymity and comfort. While recognizing the
potential pedagogical benefits of understanding student queries,
she mentioned "Students should not feel like someone is watching
them and they should feel the liberty to ask anything".

8 BEYOND CODEAID: IMPLICATIONS FOR
PEDAGOGICAL LLM-POWERED CODING
ASSISTANTS

The iterative development of CodeAid and insights gained from its
semester-long deployment enable us to propose design implications
for the broader design of AI assistants in educational contexts. We
position these implications within four main stages of a student’s
help-seeking process with an AI assistant: 1) The decision to use the
AI tool; 2) The formulation of a query; 3) The nature of response that
is supplied; and 4) Actions needed once a response is received. Our
results point to four high-level design considerations, for each of
these stages, each with unique usability and educational trade-offs:

• D1: Exploiting Unique Advantages of AI. For deciding
when to use the tool, what is the role and unique advantages
of an AI assistant compared to other available resources
within the learning ecosystem?

• D2:Designing theAIQuerying Interface.What are the UI
considerations for an AI assistant to allow users to formulate
queries/prompts in a way that balances user-friendliness
with meta-cognitive engagement?

• D3: Balancing the Directness of AI Responses. How di-
rect should the AI assistant’s responses be, so that it balances
directness and learning engagement, and who should control
this balance?

• D4: Supporting Trust, Transparency and Control. Once
a response from an AI assistant is received, what UI consid-
erations are needed to ensure accuracy, trust, transparency,
and control?

8.1 D1: Exploiting Unique Advantages of AI
An initial stage of the help-seeking process is deciding what learn-
ing resource to use within the learning material ecosystem that
may be available to them. This leads to the first major design con-
sideration of an AI coding assistant (Figure 7, D1): determining
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Figure 7: Emerging design considerations and trade-offs within the design space of AI-powered assistants for educational
settings. Each consideration is based on a key stage in students’ help-seeking process.

the role, scope, and unique advantages of future educational AI
assistants in relation to other educational resources, like TA office
hours, discussion boards, textbooks, etc. In our study, students ap-
preciated several features unique to AI assistants, such as the ability
to interact with the tool in natural language, the tool’s ability to
provide contextual assistance, and tailored responses. More specific
to CodeAid, students pinpointed unique advantages such as its
stimulation of critical thinking (using pseudo-code), technical focus
on C programming (relevant to their course), and its capability
to "pull" comprehensive documentation related to queries. Similar
features should be built within future tools.

Considering the rapidly expanding ecosystem of productivity-
focused AI tools, it is challenging to keep students in a learner-
centric AI tool. To address this issue, our results suggest designing
course-specific AI assistants, for example using approaches such as
retrieval augmented generation (RAG) to allow specific contextual
information to be included inmodel responses [35]. These assistants
should be capable of (a) generating accurate, technically correct,
and informative responses, including references to specific lecture
notes, and (b) allowing students to ask detailed questions about
their course projects, assignments, and logistics. Furthermore, with
access to the curriculum, the AI assistants’ responses will align
more closely with students’ zone of proximal development [60],
making them more relevant and beneficial for the students. Fu-
ture tools can also direct students to content on the web such as
relevant StackOverflow posts, similar to Bing Chat, and relevant
documentation as illustrated in CodeAid, as well as providing ac-
cess to instructor-verified practice exercises and sub-goal-labeled
worked examples [40].

8.2 D2: Designing the AI Querying Interface
Once a user has chosen to use an AI coding assistant, the next main
stage will be to enter their query. In CodeAid this is done through

a structured user interface, whereas in ChatGPT, users enter free-
form input. In any future system, another major design considera-
tion is how the querying interface should be designed, such that it
balances user-friendliness with meta-cognitive engagement (Figure
7, D2). Some students in our study preferred the simplicity and free-
form nature of ChatGPT, while educators appreciated CodeAid’s
structured design, and found that it promoted active engagement,
critical thinking, and thoughtful inquiry.

For instance, designers should decide (a) whether the assistant
automatically gathers context (like a plugin in an IDE) or requires
manual input from the user, (b) whether the assistant allows stu-
dents to ask questions in a free-form manner, similar to interaction
with popular chat-based AI models, or requires input in a specific
structure and format, and (c) the assistant’s level of reactivity versus
proactivity in identifying problems and facilitating help-seeking.
The trade-off to consider is that automatic context integration, free-
form inputmethods, and proactive assistancemay enhance usability
and ease of use, but could potentially reduce opportunities for stu-
dents to engage in meta-cognitive activities – such as self-reflection
and asking well-formed questions that promote critical thinking
– which are essential for success in learning programming [50].
Future research is also needed to evaluate the impact of proactive
problem identification and assistance, focusing on the design of
minimally distracting assistants. Indeed, recent work by Prather
et al. revealed that students did not like being shown suggestions
when they felt they did not need the help [51].

8.3 D3: Balancing the Directness of AI
Responses

After formulating the question, the degree of control over the type
and directness of the assistance is the next design consideration
(Figure 7, D3). According to our study, students and educators had
diverse views and requirements regarding the level of directness
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and scaffolding an AI assistant should offer. Students in our study
exhibited varying needs: some sought explicit example code, others
preferred subtle hints, and there were instances where they simply
wanted the AI to provide direct solutions. Furthermore, educators
highlighted the importance of customization options, allowing them
to tailor the AI’s level of assistance, such as restricting the display of
pseudo-code for specific queries or during certain course segments,
to better align with pedagogical goals. This introduces an important
trade-off: finding the right balance between sufficient scaffolding for
critical learning and minimizing frustration, while also considering
the degree of autonomy learners should have in personalizing their
level of scaffolding.

If the assistant is too direct and students have high autonomy
over selecting their desired level of scaffolding, students might
miss out on critical learning opportunities tailored to their zone of
proximal development. This might negatively impact skill devel-
opment and self-efficacy. Conversely, indirect responses can risk
discouraging students if they feel overwhelmed, unsupported, and
not making progress.

To promote deeper cognitive engagement and ensure progress,
future tools might, as a last resort, display generated code but
lock the AI tool until students complete a specific learning activity.
This could involve the AI assistant highlighting critical sections
of the code and prompting students to answer comprehension
questions about these parts. Additionally, future AI tools could
foster independent problem-solving using the Socratic Method [57]
and transforming code generation requests into a series of problem-
solving questions. With each correct response, the tool would reveal
the code segment corresponding to that question.

Furthermore, since code examples are a crucial learning resource
[38], future AI assistants can differentiate between example code
and direct solutions. Our thematic analysis revealed that a major-
ity of queries were asking for code and conceptual clarifications,
function-specification queries, error message interpretation, and
high-level coding guidance. Consequently, future tools could be
designed to display example code in response to queries not directly
related to course assessments.

8.4 D4: Supporting Trust, Transparency and
Control

Upon receiving a response from the AI assistant, users must eval-
uate its accuracy and helpfulness, and if necessary, provide more
information to steer the AI towards a more suitable answer. Recent
studies highlight the challenges in user interactions with gener-
ative AI models due to their low transparency and predictability
[2]. However, these challenges are compounded in educational AI
assistants, which, like CodeAid, may be designed to provide scaf-
folded, indirect responses without directly revealing solutions. Our
thematic analysis showed how CodeAid’s responses were some-
times incorrect or unhelpful. As such, students seeking to verify
CodeAid’s responses often had to write and test a small program
based on the provided suggestions. In contrast, students using a
tool that provides direct responses, such as ChatGPT, could im-
mediately access and run the generated code for verification. Any
unpredictability within a learning context could erode trust in an
AI coding assistant.

This points to a fourth design consideration (Figure 7, D4): given
the indirect nature of responses in educational AI assistants, how
can we maximize user experience, efficiency, and predictability of
obtaining a helpful response. This could involve displaying the
AI’s assumptions on input queries, engaging students in verifying
them, and enabling feedback mechanisms to ensure high-quality
responses. While such techniques could lead to higher accuracy,
they may complicate user interaction and potentially overwhelm
students. The best method for validating responses after generation
is an open question, and requires targeted future work.

One potential approach for improving accuracy and user trust
is the addition of a Sufficiency Check step similar to CodeHelp
[37] before generating the final response. This sufficiency check
would actively engage users in refining the AI’s understanding by
prompting users about missing context or clarifying uncertainties.
Moreover, future tools could enhance the validation of scaffolded
responses by including code execution capabilities and enabling
users to interact with and test the underlying code generated by the
AI, without directly revealing it. This interaction could be facilitated
through a line-by-line execution interface, similar to PythonTutor
[19], and can use a black-box approach or represent a pseudo-code
version.

9 LIMITATIONS AND FUTUREWORK
Our findings from the deployment of CodeAid are contextualized
within a second-year C programming course at a single university,
which may not directly generalize to other courses and contexts.
Furthermore, the perceived accuracy and utility of CodeAid, which
in turn influenced students’ trust and engagement, were heavily
tied to the OpenAI models we used. The initial release of CodeAid
with the code-davinci-002 model from 2021 could have adversely
shaped students’ perceptions, particularly when compared to the
subsequently adopted gpt-3.5-turbo model from 2023. This factor
might account for some of CodeAid’s inaccurate responses and the
decline in student usage we observed over time. Additionally, the
performance of these models varies between different program-
ming languages [63], or even different code-related tasks (e.g. code
explanation, fixing, or generation). For future work, we plan to
run longitudinal studies to investigate how using pedagogical AI
coding assistants affects long-term learning outcomes, competency,
self-regulation abilities, and frustration levels in educational en-
vironments. More controlled studies could also be performed to
directly compare these learning outcomes to the use of unrestricted
LLMs like ChatGPT.

Moreover, our results indicate that women used CodeAid more
often than men. Future research should investigate additional demo-
graphic factors and examine how this finding connects to existing
research on gender effects in the use of resources like TA office
hours and online discussion Q&A forums [15].

Finally, the design considerations for AI assistants in educational
contexts, as discussed in this paper, require further exploration.
Considering the variability of educational contexts and the evolving
nature of AI technologies, additional dimensions and trade-offs
might emerge.
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10 CONCLUSION
This paper presents the iterative design of CodeAid, an AI-powered
coding assistant equipped with guardrails to prevent it from gen-
erating direct solutions in response to student queries. Instead,
CodeAid provides scaffoldings, such as interactive pseudo-code, to
foster engaging learning experiences. To understand how students
utilize an AI-powered tutor and the broader implications of AI in
scaling instructional expertise, we conducted a semester-long de-
ployment of CodeAid in a programming class with 700 students. Our
data collection included: (i) approximately 8,000 usages, coupled
with students’ feedback on the responses’ usefulness; (ii) a thematic
analysis of 1,749 usages in terms of correctness, helpfulness, and
the extent of revealing direct solutions; (iii) weekly surveys and 22
semi-structured interviews with students; and (iv) a final anony-
mous survey focusing on the use of ChatGPT. Additionally, we
interviewed eight programming educators to gather insights on
the future of AI-powered educational tools. By synthesizing results
from these diverse sources, we identified four high-level design
considerations, including key trade-offs, in the emerging design
space of educational AI tools. It is our hope the the results from our
study, along with the broader design considerations which we have
discussed, will help guide the future development of AI-powered
codding assistants.
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A THEMATIC ANALYSIS CODEBOOK
This appendix includes the final codebook used for the thematic analysis of students’ usage of CodeAid. We analyzed each usage from two
primary dimensions: Query, and Response.

Table A1: CodeAid Thematic Analysis Codebook: Query -What are students asking from CodeAid?

Dimensions and Codes Code Description

What is being asked? Focusing on the content of their usage, what are they asking for, or trying to do?

1. Error Message Interpretation Students asking CodeAid about why their code is not working correctly, having errors, segmen-
tation faults, etc.

2. Problem Source Identification Students asking CodeAid to help them identify the cause of the problem.

3. Buggy Code Resolution Students asking about how to resolve the error or bug within the provided code.

4. Explain Error Message Students asking CodeAid to explain a provided error message. Students may also include code
for more context.

5. Code Execution Probes Students using CodeAid as a compiler and ask for the result or potential error when the provided
code is executed.

6. Code and Conceptual Clarification A general programming question that usually has the form of "how to do [X]?" or "what does [X]
do?"

7. Function Specification Queries Students asking for more information about a particular function, its usage and examples.

8. High-level Coding Guidance Students asking about the process of doing something at a high level and looking for some
implementation detail. For example, "How can I tokenize a dynamically allocated string?"

9. Direct Code Solution Students explicitly asking for solutions for their labs or assignments (e.g., by copying part of the
task description).

10. Explain Code Students asking CodeAid to explain their code.

Table A2: CodeAid Thematic Analysis Codebook: Response - How much is CodeAid directly revealing the solution?

Dimensions and Codes Code Description

How much directly revealing the solution? How much is CodeAid directly revealing the solution?
(The codes are sorted from most revealing to least revealing)

1. Exact Solution Code Generated the code solution to a question.

2. Exact Solution Pseudo-code Similar to "Exact Solution Code", but in pseudo-code.

3. Step to Fix Semantic Issue Generated the steps required to fix semantic/logical problems, which usually need additional
lines to achieve new functionality.

4. Step to Fix Syntax Issue Generated the steps required to fix minor syntax issues, usually needed to perform an inline fix.

5. Step to Fix External Issue Generated the steps to fix an issue that is not within the code, but about the compilation or
execution.

6. Example High-level Code Generated a generic, high-level example for a function, or a generic implementation, i.e., how to
construct a linked list, often available on Stack Overflow. This includes ALL occurrences of the
Inline Code Exploration feature.

7. Example High-level Pseudo-code Similar to "Example High level Code", but in pseudocode. This includes any occurrences of
steps/instructions on how to complete.

8. Conceptual Explanation Generated a response that is completely in natural language. Provides conceptual explanation,
clarifications, or the result of a code execution.

n/a Does not apply (reserved for "Explain Code").
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Table A3: CodeAid Thematic Analysis Codebook: Response - How technically correct?

Dimensions and Codes Code Description

How technically correct? Despite the question, how correct is the response from the tool?

1. Correct Everything including the answer and its explanation is correct.

2. Incorrect Any part of the answer or explanation is incorrect.

Table A4: CodeAid Thematic Analysis Codebook: Response - How helpful if correct?

Dimensions and Codes Code Description

How helpful if correct? Is the response helpful to students? Does it guide them the right direction based on the provided
query? Does it identify their potential issues? or is it completely misleading?

1. Helpful Answer that allows the student to take one step further, even if it is not arriving at the final
solution.

2. Not Helpful Answer that does not allow students to progress any further, is unrelated to their .

n/a Does not apply (reserved for "Incorrect").
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