
Exploring the Design Space of Cognitive Engagement Techniques
with AI-Generated Code for Enhanced Learning

Majeed Kazemitabaar
University of Toronto

Toronto, Ontario, Canada
majeed@dgp.toronto.edu

Oliver Huang
Department of Computer Science,

University of Toronto
Toronto, Ontario, Canada
oliver@dgp.toronto.edu

Sangho Suh
Department of Computer Science,

University of Toronto
Toronto, Ontario, Canada
sangho@dgp.toronto.edu

Austin Z. Henley
Carnegie Mellon University

Pittsburgh, Pennsylvania, United
States

azhenley@cmu.edu

Tovi Grossman
Department of Computer Science,

University of Toronto
Toronto, Ontario, Canada
tovi@dgp.toronto.edu

Figure 1: Illustration of the Baseline technique, displaying the AI-generated code and a comprehensive explanation, along

with seven cognitive engagement techniques requiring varying levels of user engagement either before or after revealing the

AI-generated code.

ABSTRACT

Novice programmers are increasingly relying on Large Language
Models (LLMs) to generate code for learning programming concepts.

This work is licensed under a Creative Commons Attribution 4.0 International License.

However, this interaction can lead to superficial engagement, giving
learners an illusion of learning and hindering skill development. To
address this issue, we conducted a systematic design exploration to
develop seven cognitive engagement techniques aimed at promot-
ing deeper engagement with AI-generated code. In this paper, we
describe our design process, the initial seven techniques and results

ar
X

iv
:2

41
0.

08
92

2v
1

 [
cs

.H
C

]
 1

1
O

ct
 2

02
4

https://orcid.org/0000-0001-6118-7938
https://orcid.org/0000-0001-6118-7938
https://orcid.org/0000-0001-6118-7938
https://orcid.org/0000-0002-0494-5373
https://orcid.org/0000-0002-0494-5373
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode

Kazemitabaar et al.

from a between-subjects study (N=82). We then iteratively refined
the top techniques and further evaluated them through a within-
subjects study (N=42). We evaluate the friction each technique
introduces, their effectiveness in helping learners apply concepts
to isomorphic tasks without AI assistance, and their success in
aligning learners’ perceived and actual coding abilities. Ultimately,
our results highlight the most effective technique: guiding learners
through the step-by-step problem-solving process, where they en-
gage in an interactive dialog with the AI, prompting what needs to
be done at each stage before the corresponding code is revealed.

CCS CONCEPTS

•Human-centered computing→Natural language interfaces;
Interactive systems and tools; Empirical studies in HCI.

KEYWORDS

AI-Assisted Programming, Generative AI, Copilot, ChatGPT, Cog-
nitive Engagement Enhancement, AI-Assisted Learning, Cognitive
Forcing Functions, Task Decomposition, Learning Outcomes

1 INTRODUCTION

Novice programmers often encounter challenges as they learn to
code. Initially, learners struggle with understanding fundamental
programming concepts and syntax [8, 22, 58, 78, 93], and as they
advance, they face further difficulties mastering skills such as algo-
rithmic thinking and software design principles [43, 80, 94, 123].

Recently, Large Language Models (LLMs) are becoming increas-
ingly integrated into novice programmers’ workflow, influencing
their help-seeking behaviors [50], and changing the perspectives
of both students and educators [71, 121]. Novice programmers now
frequently use LLMs for various tasks, such as writing and explain-
ing code, debugging, understanding concepts, and obtain example
solutions [33, 50, 121].

One prominent use of LLMs is for code generation [33] as demon-
strated by large-scale self-report studies [99] and analyses of student
prompts [62, 100]. Learners often cite the ability to frame questions
easily and obtain faster, contextually relevant solutions as key ad-
vantages of using LLMs over traditional methods like web searches
[64].

However, traditionally, learners proactively searched for and
found relevant code examples to address gaps in their knowledge,
meaningfully engaging themselves in a learning process [10, 15, 70,
101]. But with LLMs, learners can bypass the effortful yet beneficial
process of adapting generic code examples to specific contexts
[55, 112]. While this shift can boost productivity, it can lower their
engagement with the learning process and hinder the development
of critical programming and Computational Thinking (CT) skills
[117].

Currently, there are many concerns from both learners and edu-
cators about over-reliance on AI-generated code which could lead
to skill degradation [71, 120, 121]. Learners might accept gener-
ated code without fully understanding it, giving them the illusion
of learning [92]. This can negatively impact their ability to write,
modify, or debug code independently without AI [2, 62].

To address these challenges, prior research has sought to develop
new learning activities to enhance prompting and code comprehen-
sion skills [17, 20], or coding assistants that do not generate direct
code solutions [74] and instead, generate pseudocode [64]. However,
given the efficiency and ubiquity of LLMs, it is likely that learners
will continue to use unrestricted LLMs for code generation. There-
fore, to prevent skill degradation, the focus should shift toward
fostering deeper cognitive engagement with AI-generated code,
rather than discouraging or limiting its use. Indeed, researchers are
increasingly advocating for AI tools that promote metacognitive
reflection [106] as a way to augment human cognition.

Engaging more deeply with AI-generated code involves critically
analyzing it, evaluating the decisions that were made to solve the
problem. This process involves rejecting information that contra-
dicts their existing assumptions and adjusting their own knowledge
to incorporate new insights. To promote such behavior, we drew
inspiration from the concept of in-the-moment cognitive interven-
tions [12, 86], which have shown to enhance cognitive engagement
and incidental learning [30]. Our approach is to introduce a small
amount of forced engagement with the AI-generated code—which
we conceptualize as “friction”—before learners can use the code.

However, this friction must be carefully designed—it should not
cause frustration or be seen as an unnecessary interaction. Instead,
it should be thoughtfully designed to engage learners and provide
meaningful assistance to their learning by, for example, helping
them identify and bridge their knowledge gaps. Ideally, it would
empower learners to not only understand the AI-generated code
better but also to apply learned concepts to writing, extending, or
modifying similar code.

Therefore, we systematically explored a broad design space of
various forms of user engagements with code (Section 3). We devel-
oped seven distinct cognitive engagement techniques, illustrated in
Figure 1. Each technique introduces novel and unique forms of fric-
tion, requiring different types and levels of engagement. Another
key factor is Engagement Timing—whether to require user engage-
ment before or after revealing the code solution. All techniques are
designed based on the capabilities of LLMs and informed by prior
research about supporting novice programmers in learning to code.

• T1 - Baseline: Users can directly use the generated code
and accompanying explanation without any required en-
gagement.

• T2 - Guided-Write-Over: Users must type over each
line of the generated code while being shown explanations
about the purpose of each expression.

• T3 - Solve-Code-Puzzle: Users must reorder scrambled
lines of AI-generated code into their correct horizontal and
vertical spots.

• T4 -Verify-and-Review :AI injects errors into the gener-
ated code and users must identify and fix them with guided
support.

• T5 - Interactive-Pseudo-Code: AI generates pseu-
docode of the solution that users must manually implement
with guided support.

• T6 - Explain-before-Usage: Users must answer AI-
generated questions about various parts of the code.

Design Space of Cognitive Engagement Techniques with AI-Generated Code

• T7 - Lead-and-Reveal: The AI guides users through solv-
ing the problem step-by-step, prompting them to explain
the necessary actions and decisions for each step before
revealing the corresponding line of code.

• T8 - Trace-and-Predict: Users must trace the code exe-
cution line by line with a sample input and predict value of
variables at key steps.

To evaluate the effectiveness of each technique, we conducted
two studies with novice programmers recruited from intermediate-
level computer science programming courses. From the first
study (n=82) we identified the Lead-and-Reveal and Trace-
and-Predict techniques as the most balanced techniques, fos-
tering learning while eliciting just the right amount of cognitive
engagement—enough to induce learning, but not so much as to
overwhelm them. We then refined these two techniques based on
collected feedback (Section 5). Afterwards, we conducted a second,
within-subjects study (n=42). The second study evaluated an addi-
tional metric: how effectively do techniques help users align their
perceived and actual ability to write code of similar complexity with-
out AI assistance? Our results showed that the Lead-and-Reveal
technique better aligned participants’ perceived and actual ability
compared to the Baseline and Trace-and-Predict techniques,
without increasing cognitive load (Section 6).

Lastly, we synthesize our results and discuss the concept of
“Friction-Induced AI” to enhance short-term productivity gainswhile
preventing long-term productivity loss due to over-reliance on AI.

This paper makes the following contributions:

• Design Space for Cognitive Engagement with AI-

generated Code: seven novel AI-assisted techniques that
vary in engagement level, systematically positioned within
the design space (Section 3).

• Empirical Evaluation: In a between-subjects study (n=82),
we compared the seven techniques with the Baseline and
identify Lead-and-Reveal and Trace-and-Predict as the
most effective techniques for balancing learning gains and
friction: (Section 4).

• Refinement and Validation: A within-subjects study
(n=42) with the updated Lead-and-Reveal andTrace-and-
Predict techniques shows Lead-and-Reveal significantly
improves alignment between perceived and actual coding
ability without increasing cognitive load (Section 6).

• Open-Source Release: We provide the final Lead-and-
Reveal technique as a new tool for education use and future
research: https://lead-and-reveal.vercel.app

2 RELATEDWORK

This section discusses the challenges faced by novice programmers,
established interventions that address these difficulties, and the
evolving role of Large Language Models (LLMs) in programming
education, including their potential impact on metacognitive skills
and over-reliance on AI.

2.1 Challenges in Learning to Code

Despite the growing interest and accessibility, novice program-
mers face persistent challenges when they start learning to code

[1, 4, 11, 23, 52, 57, 103]. They must simultaneously learn concep-
tual knowledge, syntactic knowledge, and strategic knowledge like
planning, problem-solving, and debugging [93]. End-user program-
mers, who write code for their own use, face six learning barriers,
identified by Ko et al.: uncertainty about next steps, selecting appro-
priate programming constructs, combining constructs, using code
construct correctly, understanding code failures, and inspecting
program behavior [66], with similar mistakes and misconceptions
identified by other research [1, 65, 67, 76, 79]. Furthermore, as
novice programmers make progress, they face difficulties in acquir-
ing advanced skills like algorithmic thinking and software design
[43, 80, 94, 123].

To address these challenges, researchers have introduced and ex-
perimented with various pedagogical strategies and software tools.
A common approach in introductory programming courses is prac-
ticing with traditional coding tasks, where students write programs
from scratch. While beneficial, these tasks often lead to frustration
due to difficulties with syntax and conceptual understanding.

Parsons problems were introduced as an alternative, requiring
learners to arrange shuffled lines of code into the correct order, em-
phasizing logical reasoning over syntax and error correction [87].
Studies show that Parsons problems take less time to complete than
fixing buggy code or writing code from scratch, without sacrificing
learning outcomes [25]. Further research has investigated varia-
tions such as faded [115] and adaptive Parsons problems [24] with
similar results. Worked examples are another alternative, which
guide learners step-by-step through solving a problem, helping
them understand how expert programmers approach coding tasks.
They have been found particularly effective in reducing the time
needed to reach proficiency [81], leading to the development of
interactive versions [32]. Tracing exercises, where learners must
follow the execution steps in a program, are frequently used to
build understanding of programs execution and develop debugging
skills [69, 77, 109].

Similarly, visualization tools allow learners to observe program
execution and state changes, making abstract concepts like recur-
sion and memory more tangible and accessible [102]. A notable
example is Python Tutor, which displays visualizations of the pro-
gram’s data structures at each step of the code [40]. Other tools
include Omnicode, which displays a scatter plot matrix of all run-
time values for every variable in the program [59], Theseus, which
annotates functions in the code editor with the number of times
it was called during the current execution [73], and an extension
that displays a small graph of how each variable changes over time
during execution [47].

Another approach involves generating content to assist learners,
such as hints [31, 46, 56, 88], examples [53, 54, 85], tutorials [44], and
recommendations [27, 45, 82, 104, 113]. Enhanced error messages
provide more informative feedback on syntax and runtime errors,
though results on their effectiveness have been mixed [3, 18, 29, 84,
89, 91].

However, as AI tools become increasingly accessible and learn-
ers rely on them for generating code solutions, they risk missing
out on practicing and mastering essential higher-order cognitive
skills like computational thinking [117]. To address this, our work
builds on established interventions introduced through program-
ming education research to re-engage learners with AI-generated

Kazemitabaar et al.

code. Specifically, as we further elaborate in Section 3, we draw in-
spiration from these prior interventions and the associated findings
to develop cognitive engagement techniques designed to promote
cognitive engagement, deeper learning, and avoid over-reliance on
AI.

2.2 The Changing Landscape with Generative

AI

The rise of generative AI, especially Large Language Models (LLMs)
is transforming programming education. These models can gen-
erate code from natural language, explain code, correct errors in
code, and offer code completions (e.g., Github Copilot [34]). They
are now widely accessible through tools like ChatGPT and Claude
AI and can serve as personalized coding assistants and tutors [42].
Recent research demonstrates that OpenAI GPT-3 outperformed
students in multiple computer science exams [28] and GPT-4 pass-
ing exercises of three Python programming courses without human
involvement [98]. Even multi-modal AI models can solve visual
tasks like Parsons problems with high accuracy [49].

Although AI-powered tools can arguably offer exciting promises
including improved engagement and personalized feedback [60],
they also present challenges that limit learning opportunities. One
major concern is over-reliance on AI-generated solutions [90, 92].
For novice programmers, tools like Copilot or ChatGPT provide
quick answers to coding problems, which limits the opportunity for
learners to critically engage with the problem and develop solution
strategies [5]. Researchers are already providing empirical evidence
on the effect of access to AI on learning outcomes and over-reliance.
Kazemitabaar et al. conducted a controlled experiment with 69 high-
school students with no prior Python experience, comparing learn-
ing outcomes between two groups: one with access to AI and one
without, over seven sessions, followed by two evaluation sessions
without AI. Their results showed that the AI group experienced
less frustration, and improved learning outcomes for students with
stronger prior conceptual skills. But a follow-up analysis revealed
various types of over-reliance on AI. Particularly, when students
relied on AI to solve tasks autonomously, their subsequent coding
skills without AI were consistently diminished [61].

One approach to address over-reliance has been to place
guardrails around AI so that it would avoid generating direct code
solutions. Bastani et al. compared three groups of students, one
with AI, one without, and one with an AI that safeguards learning
(using prompt engineering) in a high school math class with nearly
a thousand students. Their results demonstrate that while access
to the AI boosts performance, students who later lose access to it
perform worse than those who never had access to AI–except for
those who used AI with guardrails [2]. Therefore, researchers and
educators have called out for the development of pedagogical AI
tools [71] which has led to the development of coding assistants like
CodeAid [64] and CodeHelp [74] that avoid displaying direct code
solutions. Although these solutions might help, they are common
in limiting and discouraging the use of AI-generated code. How-
ever, generative AI tools are here to stay and many acknowledge
that we have crossed a point of no return with AI integration in
programming education, and therefore, we should embrace this
new paradigm [71]. In our work, we take an alternative approach

and instead promote learners in deep, cognitive engagement with
AI-generated code.

2.3 Cognitive Engagement with AI

Over-reliance on AI is a challenge that is being observed in many
domains and workflows beyond learning to code. For example
novice designers often take on AI suggestions without putting the
effort to explore the alternatives [21, 118]. This over-reliance stems
from cognitive biases and tendencies. One prominent example is
automation bias, which describes the human tendency to favor
suggestions from automated systems, often ignoring contradictory
information from non-automated sources, even when the latter
is correct. Extensive research, such as studies involving doctors
using clinical decision support systems, has demonstrated the per-
vasiveness of this bias [35]. Another contributing factor is cognitive
offloading, which suggests that people rely on external aids—in this
case, AI—in order to reduce their cognitive load [95]. Together,
these concepts—automation bias and cognitive offloading—form
the motivation of our work, highlight the challenges in integrating
AI into human workflows and the need for interventions that strike
the right balance between engagement and cognitive load.

While this challenge has existed since the development of au-
tomated systems, the explosive adoption of AI in everyday life
and work has amplified it into a widespread problem, affecting
millions of people—not just a few experts using decision support
systems. Thus, a growing number of researchers are recognizing
the need for interventions that help users engage more deeply
with AI. For example, Tankelevitch et al. advocated that all gener-
ative AI-powered systems should provide metacognitive support
strategies, such as explainability and customizability, and suggested
mechanisms for eliciting user reflections on both their own de-
cisions and those of AI [106]. Similarly, Gajos et al. conducted
three experiments with nutrition-related decisions and found that
providing AI explanations without direct recommendations led to
users learning more, as users had to derive their own conclusions
from the explanations rather than relying on an ’answer’ from the
AI [13, 30]. Buccinca et al. tested three cognitive forcing functions—
interventions that require users to explain why they accept or reject
AI recommendations—and found that such interventions can help
reduce over-reliance on AI. However, they also observed that peo-
ple rated these designs less favorably compared to those where they
might over-rely on AI, understanding again that it is important to
carefully design these interventions [12].

In programming education, Kazemitabaar et al. studied the issue
of learners passively accepting AI-generated code by developing
CodeAid [64], which generates pseudo-code, or highlights incor-
rect lines with suggested fixes, rather than directly displaying code
solutions. Similarly, Hou et al. developed CodeTailor [51], which
responds to learners’ help requests by presenting code solutions as
Parsons problems for them to solve, instead of directly providing
the fixed solution. Their evaluation study showed how this ap-
proach improved learning outcomes compared to a baseline where
generated code was directly provided.

Our work builds on these insights in the context of AI-assisted
programming and explore new interventions that can help learners

Design Space of Cognitive Engagement Techniques with AI-Generated Code

Figure 2: Summary of cognitive engagement techniques

mapped within the design space. The first set of columns

(in orange) represents learning opportunities aligned with

Bloom’s taxonomy. The second set (in blue) corresponds to

cognitive engagement levels based on the ICAP framework.

The final two columns (in purple) reflect whether the tech-

nique either reveals the code before requiring user engage-

ment or requires user engagement before revealing the solu-

tion.

cognitively engage with AI-generated code to ensure they retain
higher-order CT skills like problem-solving.

3 COGNITIVE ENGAGEMENT TECHNIQUES

WITH AI-GENERATED CODE

To properly explore the design space of cognitive engagement tech-
niques, we developed a set of initial prototypes, each with distinct
types of user involvement based on the capabilities of LLMs and
prior literature in supporting novices in learning to code. We then
iteratively refined each technique through design probe sessions
with five CS educators.

Additionally, to guide our design, we constructed a design
space based on three key dimensions relevant to our context. First,
Bloom’s taxonomy which classifies learning objectives by cognitive
complexity [7]: Remember, Understand, Apply, Analyze, Evaluate,
and Create. Specifically, we use definitions adapted for program-
ming education [108]. Second, the ICAP framework [16], which
links active learning outcomes to four categories of engagement
level: Interactive, Constructive, Active, and Passive. And third, en-
gagement timing: whether to require engagement with the AI-
generated code before (Engage&Reveal) or after revealing the code
solution (Reveal&Engage).

We mapped each technique within the design space according
to the above three dimensions, illustrated in Figure 2. We acknowl-
edge that some degree of subjective interpretation is inherent in
this process. Our design space is not meant to imply that these
techniques can fit neatly into distinct areas. Rather, it was to guide
us in making intentional design decisions. Below, we describe each

technique, including the prior literature that inspired it and its
design.

3.1 T1. Baseline (Minimal | Passive | Reveal &

Engage)

In the Baseline technique, after the user provides the input prompt,
the AI generates code and a detailed explanation using an initial
prompt, and it is displayed to the user, similar to tools like ChatGPT.
The level of engagement is completely optional and up to users.
This technique induces little engagement, therefore classified as
passive engagement.

3.2 T2. Guided-Write-Over (Remember |

Active | Engage & Reveal)

For this technique, we drew inspiration from prior research in com-
puting education, which found that requiring learners to type over
worked examples improves learning [32]. This technique increases
learning opportunities by forcing deliberate practice [26], prevent-
ing passive copying of code without engaging one’s attention to
understand it.

In our technique, ghost text for each line of line of the generated
code is displayed, similar to Github Copilot [34], but it requires
users to type over it. A novel aspect of our technique is that, as users
type, explanations for each expression (generated by a separate LLM
prompt) are shown below the expression. Additionally, a high-level
description of how the line contributes to the overall solution is
displayed to the right of the line. Our technique also highlights
incorrectly typed characters in yellow, prompting users to retype
them. After two incorrect attempts, the system moves to the next
character while marking the error in red. After the user successfully
types over each line, they can proceed to use the code in their editor.

This technique aligns with the "Remember" level of Bloom’s
taxonomy. It prompts users to actively retrieve previously learned
concepts and recall relevant programming constructs, reinforcing
memory retention and prevents shallow engagement.

3.3 T3. Solve-Code-Puzzle (Analyze |

Constructive | Engage & Reveal)

This technique adapts Parsons problem, which has been widely
used in computing education for their demonstrated effectiveness.
It requires learners to rearrange mixed code blocks to form a correct
program [19, 87]. Empirical research has shown that various forms
of these problems, including faded [115], adaptive [24], and person-

alized [51], can reduce cognitive load while maintaining learning
performance [25].

In this technique, each line of the AI-generated code is turned
into a draggable block and is mixed inside a drag-and-drop pane,
and the indentation is removed in the left pane. The user has to then
drag each code block from the left, and put it in the correct spot
on the right, as well as its correct level of indentation (horizontal
spot). After using all code blocks, they can hit the "check" button
that will only tell the user whether their solution is correct or not,
and if all blocks are correctly placed they can proceed to use the
code in their editor. There is also a "hint" button that will highlight
all blocks that are placed incorrectly, and provide arrows to which

Kazemitabaar et al.

direction each block should be moved to without explicitly telling
them the exact position.

This technique is positioned at the "Analyze" level as it requires
analyzing what each block does and how it contributes to the solu-
tion, then they must rearrange them, "construct" sub-programs, and
understand how the blocks work together to form a functioning
program.

3.4 T4. Verify-and-Review (Evaluate |

Constructive | Engage & Reveal)

This technique draws inspiration from the use of debugging–a
fundamental CT skill [117]–to help learners grasp programming
concepts [36, 72, 122]. Research beyond programming shows that
incorporating incorrect solutions in worked examples can enhance
learning transfer for advanced learners, butmay overwhelm novices
unless additional support, such as error highlighting, is provided
[37]. We applied these design guidelines to inform the design of
the technique.

In this technique, the AI-generated code undergoes an additional
LLM prompt that deliberately injects 3-4 errors, depending on the
code’s length and complexity. The user is then presented with this
editable, incorrect code in a code editor, where they can run and
debug it. The user is asked to identify and fix the injected errors.
Furthermore, to assist users who might struggle with identifying
the problems, clicking the "check" button highlights any remaining
lines of code that needs to be fixed (using an LLM prompt). If they
need help with how to fix the incorrect part, clicking on the "hint"
button offers progressively more direct guidance, starting with
hints about potential problems and eventually showing the correct
code for each line. The user can use the editor to fix the problematic
code and then check it with the "check" button. Once the code is
error-free, the user can proceed to using the code in the editor.

This technique engages users at the "Evaluate" level by requiring
them to actively check whether the code meets requirements or
produces the correct output. Moreover, by fixing errors, they are
required to critique the logic and quality of the code. They must
determine which portions of the code are incorrect and fix those,
while keeping the correct parts of the code.

3.5 T5. Interactive-Pseudo-Code

(Understand | Constructive | Engage &

Reveal)

We were inspired by the use of pseudocode in computing education
to support algorithmic thinking before introducing complex syntax
[75, 96, 107], as well as by CodeAid, an LLM-powered assistant that
encourages active learning by generating pseudocode rather than
providing direct code solutions [64].

This technique uses an additional LLM prompt to generate a
subgoal-labeled, hierarchical pseudocode, displayed fully to the
user without showing the code solution. The pseudocode is orga-
nized into subgoals, grouping several lines of codewith a descriptive
title. Users are provided with an empty code editor beside the pseu-
docode to write the corresponding code. Two buttons–“check” and
“review”—use an LLM prompt to help guide the user by checking
their code and offering feedback if errors are found. Initially, only
subgoal titles are shown, with an "expand" button to reveal the

pseudocode. Hovering over each pseudocode line provides a de-
tailed explanation, and users can access two progressive levels of
hints: syntactical guidance, followed by revealing the actual Python
code. After successfully writing the code and verifying with the
"check" button, users can proceed to using the code in their editor.

This technique reaches the “Understand” level as it helps them
interpret the underlying logic and requires them to translate an
abstract representation of the problem to concrete code, in a con-
structive manner.

3.6 T6. Explain-before-Usage (Understand |

Interactive | Reveal & Engage)

This technique is motivated by prior work on self-explanation,
where learners were encouraged to explain the code. Researchers
found that this can be a successful intervention, increasing engage-
ment with worked examples [110], and that the ability to explain
code has a significant relationship with the ability to write code
[77, 83, 109].

In this technique, after the AI generates the code, it is immedi-
ately displayed to the user. Immediately afterwards, an important
part of the code (determined by a second LLM prompt) is then
highlighted, followed by a short-answer question for the user to
answer. The user’s response is then evaluated via another LLM
prompt with feedback and a score from 0 to 5, based on accuracy
and completeness. The user has up to 3 attempts for each question,
with the correct answer automatically shown after the third try. A
total of 3-5 questions are asked from various parts of the generated
code, depending on the code’s complexity, after which the user can
proceed to using the code in the editor.

This technique also reaches the "Understand" level as it engages
users to interpret, explain, and infer meaning from existing code,
without moving towards higher cognitive processes. However, it
does this interactively, as users interact with AI to answer and
receive feedback on their explanations.

3.7 T7. Lead-and-Reveal (Create | Interactive

| Engage & Reveal)

This technique draws inspiration from CS Unplugged activities
[6], which teach core concepts without any coding, and have been
shown to improve computational thinking skills [9]. We integrate
this with scaffolded self-explanation using Socratic questioning,
which has proven to enhance coding comprehension [105].

After the code is generated, it is not displayed to the user. In-
stead, a second prompt is used to generate Socratic multiple-choice
questions which are then displayed on one side of the interface.
These questions scaffold the step-by-step process of solving the
task and prompting the user in “what needs to be done at each
step of the algorithm/solution” in a structured format. After the
user picks the correct answer (where they have up to three retries),
its corresponding line of code (which is the next line) will be dis-
played on the right with an explanation about how their answer
and that line contributes to the overall solution. As each question
is answered, its corresponding line of code will be progressively
revealed on the right of the interface. This process is continued
until all lines of the generated code is revealed and then the user
can proceed to use the code in their editor.

Design Space of Cognitive Engagement Techniques with AI-Generated Code

This technique reaches the “Create” level as it engages users
in creating a novel solution. They are prompted to interactively
engage with the AI in hypothesizing and determining the next step
in an algorithm. Since the code is not initially displayed, they are
required to predict the logic, which stimulates creative thinking.

3.8 T8. Trace-and-Predict (Apply |

Constructive | Reveal & Engage)

This technique is inspired by research showing that visualizing the
notional machine is an effective method for learning programming
concepts [41, 102]. Particularly, several studies have found a positive
correlation between learners’ performance on code tracing tasks
and their code writing tasks [69, 77, 109]. Based on these findings,
we aimed to strengthen learners’ understanding by engaging them
in code tracing tasks with integrated questions to sustain their
engagement.

In this technique, the AI-generated code is displayed to the user
with a sample input for execution. The user is then required to trace
the code in a debugger-like system that includes buttons to step
forward or backward through the code execution, and real-time
variable values value of variables as they change. At certain complex
parts of the code (identified by an LLM prompt), the technique does
not allow the user to proceed. It requires the user to predict the
value of a variable after that line of code is executed. The user
can retry each variable prediction question three times and on
the third try, the answer is displayed. This process is continued
until several important parts of the code are covered with value
prediction questions. After the user finishes tracing the entire code,
and answering all the prediction questions along the way, they can
then proceed to using the code in their editor.

Lastly, this technique reaches the “Apply” level as it requires
users to examine the control flow, understand variable states, and
identify how code executes line by line. Users have to actively solve
questions about unfamiliar code, applying the rules of execution in
a guided environment.

4 STUDY 1: COMPARING ALL TECHNIQUES

We conducted a between-subjects study with 82 participants to
evaluate each technique against the Baseline technique without
forced cognitive engagement. Our goal was to evaluate:

• RQ1 [Performance]: How effective are the cognitive en-
gagement techniques in supporting participants’ ability
to transfer learned programming concepts to isomorphic
coding tasks without AI assistance?

• RQ2 [Friction]: How do the techniques impact perceived
friction, measured through time on task and cognitive load?

• RQ3 [Perceptions]: What are participants’ perceptions
about technique and the type of user involvement that they
require?

4.1 Experiment Tool Design

To evaluate the effectiveness of our techniques, we built a web-
based application that allows users to log in and complete AI-
assisted or manual coding tasks. This also enabled specific tasks
to be assigned to each user by the experimenter. The tool was de-
signed to provide a self-paced and consistent experiment for all

participants. In AI-assisted tasks, users interact with a chatbot to
generate code. To avoid generating incorrect or unrelated code,
the chatbot compared the user’s prompt with the current task and
provided feedback if details were missing. Additionally, to ensure
consistent outputs across participants, pre-generated responses for
each task and technique were used. In the Baseline technique,
code is immediately shown with an accompanying explanation. For
other techniques, a modal that covers the entire screen displays the
technique after a 5-second delay to simulate generation time. Once
users finish interacting with the technique, the modal disappears
and users can see the code and its explanation.

The tool is developed using TypeScript with a client-server ar-
chitecture. The server, implemented in Node.js, stores user data and
logs using a MongoDB database, and interacts with OpenAI APIs
(GPT-4). It parses LLM outputs and communicates with a Python
shell and language server for running Python code and provid-
ing real-time autocomplete and error-detection for the client-side
code editor. The Monaco code editor is used for code editing, exe-
cution, and submission. The user interfaces can be seen in 1. Full
details, including prompts and source code, are available on GitHub:
https://github.com/MajeedKazemi/code-engagement-techniques.

4.2 Methodology

The study design posed two primary challenges: (1) ensuring par-
ticipants had similar backgrounds to minimize variance in prior
knowledge, and (2) designing programming tasks that would uni-
formly challenge participants, requiring assistance and enabling
both learning and the transfer of learned concepts to isomorphic
tasks. The following sections outline the methodology used to
address these challenges. An overview of the study procedure is
displayed in Figure 3.

4.2.1 Participants. We recruited 82 participants (44 male, 37 fe-
male, 1 non-binary), ages 18–23 (𝑀 = 19), from an undergraduate
programming course about data structures at a large public uni-
versity. To ensure a consistent level of knowledge, all participants
were recruited from the same class. Participants reported their fre-
quency of using AI tools like ChatGPT for programming as daily
(n=14), weekly (n=33), monthly (n=8), rarely (n=22), and never
(n=5). Additionally, they reported using ChatGPT primarily for fix-
ing code (n=59), explaining concepts (n=54), providing code snippet
explanations (n=47), and generating code from descriptions (n=32).
The study was approved at our institutes ethics review board, and
informed consent was obtained from all participants prior to the
study. Each participant received $25 as compensation.

4.2.2 Study Procedure. As shown in Fig. 3, our study procedure
consisted of three phases: pre-test, training, and evaluation. We
describe each phase in detail below.

• Phase 1. [Pre-Test] 5 Code-Tracing Questions. All par-
ticipants initially attended an online 30-minute session over
MS Teams to perform a pre-test, including five multiple-
choice code tracing questions about the stack and queue
data structures. The scores were then used to create eight
balanced groups, each being randomly assigned to one
of the seven experimental or the Baseline techniques.
The mean pre-test scores ranged from 43.5% to 49.0%,

Kazemitabaar et al.

Figure 3: Overview of Study 1 procedure: Participants began with a pre-test, were split into 8 balanced groups, trained with AI

using their assigned cognitive engagement technique, completed post-training questionnaires, took a short break, and then

performed manual coding tasks for evaluation.

with a standard deviation of 2.9% across the group means.
Each group had 10 participants, except for the Verify-and-
Review and Baseline groups, which included 11 partici-
pants.

• Phase 2. [Training] 4 Tasks with Assigned Cognitive

Engagement Technique. Participants then attended an in-
person 2-hour session (including a 10-minute break) for the
main study in which they used the web-based experiment
tool. Participants logged in with their given credentials,
where they were automatically assigned to the technique
determined in advance. They then were instructed about
how to use their assigned technique, followed by a warm-
up task using the technique, and four training tasks with
their technique on slightly complex tasks: two using stacks,
and two using queues.
The tasks were designed to be slightly outside of partici-
pants’ zone of proximal development [111]. We consulted
with the instructor of the course from which participants
were recruited to ensure that the tasks were useful for their
learning, were sufficiently challenging to solve indepen-
dently, and could potentially be learned through sufficient,
deep engagement with the code solution.
Each task in our experiment tool first displayed the task de-
scription, several test-cases, and a multiple-choice question
that asked participants how well they understand the task
as a way to prompt them and to make sure they understood
the task before starting to work on it. While working on
the AI-assisted tasks, participants were given the option to
either copy the task description as provided or rephrase it in
their own words. Additionally, since engaging with the AI-
generated code beyond the requirements of each technique
was optional, participants were advised to move on to the
next task once they felt confident in their understanding,
without exceeding 15 minutes per task.

• Phase 3. [Evaluation] Survey + 2 Coding Tasks with-

out AI Assisance.After completing the four training tasks,
participants were asked to first fill out a survey, followed by
working on two manual coding tasks without AI assistance.

The survey included questions about perceived learning
after using each technique, their perceived task load eval-
uated using the NASA Task Load Index (TLX) [68], and
several Likert-questions about their willingness to use the
techniques, and open-ended questions about what they
liked and disliked about the process of using the technique
that they were assigned to.
Participants then proceeded to work on two evaluation
tasks, one being isomorphic to the second task about stacks
and the other being isomorphic to the fourth training task
on queues, with minimal changes in task requirements. No
starter code was provided for the evaluation tasks. A timer
was displayed on top of these tasks and participants were
instructed to skip the task if they were not able to finish
the task within 20 minutes.

4.2.3 Data Analysis. Learners’ responses to the manual coding
tasks were graded using two detailed rubrics, each tailored to one
of the two tasks. These rubrics focused on key concepts and the
use of data structures and how they were used in the training tasks.
After the first author tested and refined the rubric on 25% of the
responses, it was applied to all 82 submitted codes for each task by
the first author. For each of the training tasks we also collected the
time they spent on each task, which could be an indicator of how
much friction the technique caused.

For statistical analysis, we used a generalized linear model (GLM)
to examine the effect of the intervention techniques on learners’
evaluation scores while controlling for pre-test scores. One-way
ANOVA is used for normally distributed data with equal variances,
while the Kruskal-Wallis H test is the non-parametric alternative for
non-normal data. For pairwise comparisons, an independent t-test
is applied for normally distributed data, and the Mann-Whitney U
test for non-normal data. In this study, we focused on pairwise com-
parisons between each of the seven experimental techniques and
the Baseline technique, yielding a total of seven comparisons. To
control for the risk of Type I error due to multiple-comparisons, we
applied a Bonferroni correction, setting the threshold for statistical
significance at 𝛼 = 0.05

7 = 0.007.

Design Space of Cognitive Engagement Techniques with AI-Generated Code

4.3 RQ1 [Performance] How effective are the

cognitive engagement techniques?

Regarding the effect of the techniques on learners’ ability to write
code manually without AI assistance, the generalized linear model
explained 17.7% of the variance in post-test manual coding scores
(Pseudo 𝑅2 = 0.177). Pre-test scores were a significant predictor of
post-test performance (𝑏 = 0.34, 𝑆𝐸 = 0.12, 𝑧 = 2.78, 𝑝 = .005),
indicating that higher pre-test scores were associated with higher
post-test scores. Compared to the Baseline technique (𝑀 = 31.5,
𝑆𝐷 = 28.2) which involved no forced engagement and demonstrated
nearly the lowest mean performance, the Lead-and-Reveal tech-
nique (𝑀 = 58.3, 𝑆𝐷 = 39.8) demonstrated the greatest improve-
ment (𝑏 = 26.8, 𝑝 = .058), though this did not reach statistical
significance. The second most effective technique was Solve-Code-
Puzzle (𝑀 = 54.1, 𝑆𝐷 = 38.2; 𝑏 = 22.8, 𝑝 = .108), followed closely
by Trace-and-Predict (𝑀 = 54.1, 𝑆𝐷 = 37.9; 𝑏 = 21.8, 𝑝 = .123).

A post-hoc power analysis (𝜂2 = 0.112) showed the study was
underpowered with 82 participants. To reach 90% power, a sample
size of 153 would be required, suggesting the non-significant find-
ings may be due to insufficient power. Future studies should aim
for a larger sample.

4.4 RQ2 [Friction] How do the techniques

impact perceived friction?

To compare participants’ perceived friction across techniques, we
analyzed both task completion time and NASA Task Load Index
(TLX) scores. A Kruskal-Wallis H test was used to examine differ-
ences in the six TLX dimensions across the eight techniques. Signif-
icant differences were found in frustration (𝜒2 (2, 𝑁 = 82) = 19.5,
𝑝 = .006), physical demand (𝜒2 (2, 𝑁 = 82) = 16.0, 𝑝 = .025),
and effort (𝜒2 (2, 𝑁 = 82) = 14.1, 𝑝 = .05). A Mann-Whitney
U test showed that Verify-and-Review (𝑀 = 72.7, 𝑆𝐷 = 19.6;
𝑝 = .035) had significantly higher frustration compared to the Base-
line (𝑀 = 46.7, 𝑆𝐷 = 27.9). Higher physical demand was reported
for Interactive-Pseudo-Code (𝑀 = 60.0, 𝑆𝐷 = 19.9; 𝑝 = .005) and
Guided-Write-Over (𝑀 = 65.7, 𝑆𝐷 = 28.7; 𝑝 = .015) compared to
the Baseline (𝑀 = 36.4, 𝑆𝐷 = 14.8).

Task completion time was analyzed using a one-way ANOVA,
which revealed significant differences (𝐹 (7, 74) = 3.64, 𝑝 = .002).
The Baseline had the shortest time (𝑀 = 596𝑠 , 𝑆𝐷 = 268𝑠), while
Solve-Code-Puzzle (𝑀 = 1055𝑠 , 𝑆𝐷 = 272𝑠; 𝑡 (19) = 3.89, 𝑝 <

.001, 𝑑 = 1.7) and Guided-Write-Over (𝑀 = 1033𝑠 , 𝑆𝐷 = 280𝑠;
𝑡 (19) = 3.64, 𝑝 = .001, 𝑑 = 1.6) took the longest. Lead-and-Reveal
(𝑀 = 914𝑠 , 𝑆𝐷 = 347𝑠) was closest to the Baseline, with the
smallest effect size difference (𝑡 (19) = 2.36, 𝑝 = .029, 𝑑 = 1.0).

Lastly, the number of times that participants tested and ex-
ecuted the AI-generated code after they finished the technique
was statistically significant, indicated by a Kruskal-Wallis H test
(𝜒2 (2, 𝑁 = 82) = 23.16, 𝑝 = .001). The Baseline technique had the
most number of runs (𝑀 = 3.9, 𝑆𝐷 = 4.7), while the Interactive-
Pseudo-Code (𝑀 = 0.3, 𝑆𝐷 = 0.6), followed by Trace-and-
Predict (𝑀 = 0.6, 𝑆𝐷 = 0.7), and Verify-and-Review (𝑀 = 1.0,
𝑆𝐷 = 1.6) had the least. This could be explained by how the user has
already executed the code and checked the output in the techniques
before using the code in the editor.

4.5 RQ3 [Perceptions] What are participants’

perceptions of the techniques?

Below, we summarize participants’ (𝑃1𝑇 1–𝑃10𝑇 8) perceptions of
each technique based on their responses to open-ended questions
about their likes, dislikes, and the impact on their understanding
and engagement with AI-generated code.

4.5.1 T1: Baseline. Several participants acknowledged that the
AI-generated code and explanations helped them grasp core con-
cepts, with one noting that it facilitated understanding of the “main
concepts” (𝑃7𝑇 1) and another stating it helped “figure out the logic
[they] needed” (𝑃3𝑇 1). However, other participants indicated that
this approach provided “only a basic idea of how the code works”
(𝑃11𝑇 1). The majority emphasized that having the AI provide so-
lutions directly did not foster meaningful learning. As 𝑃10𝑇 1 re-
marked, “directly giving [them] the answers was not helpful for
learning,” a sentiment echoed by others (𝑃1𝑇 1, 𝑃2𝑇 1, 𝑃5𝑇 1, 𝑃6𝑇 1).
For instance, 𝑃5𝑇 1 reflected, “without actually interacting much
with the code the AI had written, I wasn’t able to apply it.” This
feedback underscores the limited efficacy of passive AI-generated
content for promoting deeper engagement and independent code-
writing skills.

4.5.2 T2: Guided-Write-Over. Participants generally appreciated
the Guided-Write-Over technique for its ability to simulate the
coding process, with several noting that it felt “similar to writing
the code [themselves]” (𝑃8𝑇 2) and encouraged them to “pay atten-
tion to the small details” (𝑃6𝑇 2). They found the inline explanations
beneficial for learning, particularly in understanding the purpose of
individual expressions (𝑃4𝑇 2, 𝑃6𝑇 2, 𝑃9𝑇 2). However, some partici-
pants found the approach cumbersome, with one stating that it was
“tedious and slowed down [their] working pace” (𝑃7𝑇 2) and others
describing it “simple and repetitive” (𝑃10𝑇 2), and even “extremely
annoying” (𝑃6𝑇 2). A recurring critique was that the explanations
focused too heavily on what the code did, neglecting the why be-
hind the solution in the broader context of problem-solving (𝑃3𝑇 2,
𝑃8𝑇 2). Furthermore, there were concerns that the technique limited
independent problem-solving, with one participant noting that it
“forces the user to follow [the AI’s] algorithm, which may result in
less practice in critical thinking and problem-solving” (𝑃6𝑇 2), while
another mentioned it “did not address discrepancies” between their
own expected approach and the AI-generated code (𝑃7𝑇 2).

4.5.3 T3: Solve-Code-Puzzle. Participants expressed that the pro-
cess of actively assembling code fragments fostered deeper critical
engagement with code structure and logic, with several noting it as
“a great learning tool” (𝑃2𝑇 3) that “forces you to have some under-
standing of how the solution works” (𝑃4𝑇 3). Many appreciated the
cognitive challenge, observing that it “asks you to actually solve
the problem” (𝑃1𝑇 3) and “think about how the function should be
implemented” (𝑃7𝑇 3). Some valued the structured breakdown of
the task, which “reduced stress” and made the process feel “more
interesting, like playing with puzzles” (𝑃5𝑇 3). However, the task
also elicited mixed reactions, with a few participants describing it
as “mentally exhausting” (𝑃6𝑇 3) and “overwhelming” (𝑃9𝑇 3), par-
ticularly when struggling to comprehend the purpose of individual
code lines. This led to feelings of being “mentally tired” (𝑃6𝑇 3) and
finding the task “difficult to understand and learn” (𝑃5𝑇 3). The rigid

Kazemitabaar et al.

Figure 4: An overview of results from Study 1 (left to right): the performance on the two manual coding tasks. Average time

spent on each technique during the training. Perceived understanding and reported willingness to use each technique (on

5-point Likert scales).

Figure 5: Cognitive load results for 8 techniques. Each box-plot displays the six dimensions of the raw NASA TLX (mental,

physical, temporal demand, inverted performance, effort, and frustration) reported by participants after using each the

techniques for four coding tasks. Each technique is represented by a different color, with higher values indicating higher task

load.

enforcement of code ordering further exacerbated frustration for
some, as it “required some of the code to be in an exact order even
though it did not matter in some cases” (𝑃7𝑇 3).

4.5.4 T4: Verify-and-Review. The technique elicited mixed reac-
tions from participants, with several highlighting both its strengths
and limitations. Some participants appreciated the active engage-
ment required, with P1 noting that it “forcedme tomanually process
the code,” and 𝑃6𝑇 4 emphasizing that the progressive hint system
“contributed to my learning as it didn’t give me the answer straight
away.” However, this benefit was tempered by concerns over the
hint system fostering dependency, with 𝑃9𝑇 4 remarking that the
hints became “straight-up corrections” and 𝑃10𝑇 4 explaining that
this led to a lack of cognitive effort because they “don’t need to
think.” 𝑃7𝑇 4 saw value in the technique’s ability to “enhance the
ability to understand code written by others” as it encouraged
[them] “to think about the kinds of mistakes that might occur in
the code,” yet this was counterbalanced by a more prevalent issue:
the injected errors often caused confusion rather than promoting

deeper learning, as expressed by 𝑃2𝑇 4, 𝑃3𝑇 4, 𝑃4𝑇 4, 𝑃5𝑇 4, 𝑃7𝑇 4, and
𝑃11𝑇 4. Additionally, the lack of debugging features in the code edi-
tor was a significant frustration for some participants, with 𝑃1𝑇 4
noting that such features are “integral to [their] understanding of
code.” Overall, while the technique showed promise in fostering
active code comprehension, it also introduced usability challenges
that hindered its effectiveness.

4.5.5 T5: Interactive-Pseudo-Code. Participants expressed
mixed reactions to the hierarchical pseudocode technique. Several
appreciated how it encouraged problem-solving and independent
thinking, with 𝑃1𝑇 5 noting it pushed them “to think the solution
by [them]self,” and 𝑃2𝑇 5 appreciating the “chance to try [them]self
and implement the code based on the skeleton.” The multi-level
hint system was also praised, as 𝑃6𝑇 5 valued “how it doesn’t
immediately reveal the answer.” However, 𝑃8𝑇 5 felt they were “just
following instructions” rather than truly creating code. While 𝑃7𝑇 5
found the pseudocode helpful for “break[ing] down a complicated
problem into a digestible manner,” others (𝑃2𝑇 5, 𝑃9𝑇 5, 𝑃10𝑇 5)

Design Space of Cognitive Engagement Techniques with AI-Generated Code

found it unclear, especially for complex tasks. This highlights
both the strengths and limitations of the approach in facilitating
learning with AI-generated code.

4.5.6 T6: Explain-before-Usage. Participants generally appreci-
ated the technique’s ability to enhance engagement and deepen
their understanding of AI-generated code. Many noted that it
“helped [them] understand each crucial step in the code” (𝑃1𝑇 6), “in-
ternalize the purpose of each line” (𝑃7𝑇 6), and “prompted [them] to
think deeper” (𝑃5𝑇 6, 𝑃6𝑇 6), while also being intellectually challeng-
ing (𝑃5𝑇 6). However, some expressed concerns that the technique
“only managed to explore surface level knowledge” (𝑃4𝑇 6) and “did
not help [them] understand the code as a whole, just little bits of it”
(𝑃4𝑇 6), particularly when it “would ask about a line of code whose
purpose is rather straightforward” (𝑃9𝑇 6). Participants appreciated
the feedback provided, as it “could point out my mistakes” (𝑃1𝑇 6)
and helped them identify “why [their] logic was flawed” (𝑃7𝑇 6),
though some desired more personalized, detailed feedback rather
than “just showing them the correct answer” (𝑃5𝑇 6).

4.5.7 T7: Lead-and-Reveal. Learners appreciated that the tech-
nique encouraged them to “think of the purpose of each line of
code” (𝑃3𝑇 7) and helped them “get [their] own idea of what needs
to be done to solve it” (𝑃5𝑇 7), with its sequential approach enabling
them to “break down the task into pieces” (𝑃6𝑇 7). This scaffolded
process guided learners to “follow the correct thinking process of
the code step by step” (𝑃7𝑇 7). However, some participants found
certain questions lacking “comprehensive explanations and con-
text” (𝑃2𝑇 7), leading to confusion as they had to “decipher why
that approach was used” (𝑃5𝑇 7), which at times “altered [their]
expectations for what [they] needed to do to solve the problem”
(𝑃1𝑇 7) when they had a different solution in mind. This resulted
in participants like 𝑃10𝑇 7 feeling they were “constantly guessing
what the AI was doing.” Several participants (𝑃2𝑇 7, 𝑃4𝑇 7, 𝑃7𝑇 7) sug-
gested that providing hints or explanations after incorrect answers
would be beneficial in alleviating these challenges.

4.5.8 T8: Trace-and-Predict. Participants generally found the
technique beneficial for fostering deeper engagement with AI-
generated code. Many highlighted that tracing variable values
“helped [them] slow down and think more about the code” (𝑃4𝑇 8),
promoting a clearer understanding of “each line of the code” (𝑃2𝑇 8)
and “how the code works” (𝑃5𝑇 8). The prediction questions en-
couraged users to engage critically, enhancing comprehension of
“concepts and strategies used to solve problems” (𝑃3𝑇 8) and “forcing
[them] to think about what was happening” (𝑃8𝑇 8), contributing to
their learning (𝑃10𝑇 8). However, the technique’s step-by-step pro-
cess was seen as overly time-consuming and “strenuous” (𝑃10𝑇 8),
with users expressing frustration over “a lot of steps and questions”
(𝑃3𝑇 8) and the lack of a “skip button” (𝑃3𝑇 8), even for straightfor-
ward sections. Participants also disliked the absence of explanations
for incorrect predictions or code design choices, stating that “the
system should have shown some explanation” (𝑃10𝑇 8) and that
there were “no explanations as to why the code was designed in
that way” (𝑃1𝑇 8).

4.6 Summary of Results

Overall, the Lead-and-Reveal, Trace-and-Predict, and Solve-
Code-Puzzle techniques emerged as the most effective, showing
improvements in learners’ manual coding performance, although
these differences did not reach statistical significance. Both Lead-
and-Reveal and Trace-and-Predict had the highest performance
overall, without imposing a meaningful task load and having the
closest completion time to the Baseline. Conversely, techniques
such as Verify-and-Review and Guided-Write-Over induced
higher levels of frustration and physical demand, correlating with
lower performance and perceived learning. While Interactive-
Pseudo-Code and Explain-before-Usage showed some cognitive
benefits, they were also seen as cognitively taxing and limited in
promoting deeper problem-solving.

These results underscore a critical trade-off within the Engage-
ment Timing spectrum, where the final code solution is either re-
vealed before user engagement or withheld until after engagement.
When solutions are presented upfront, as in Trace-and-Predict
or Explain-before-Usage, users may feel overwhelmed, but this
approach offers a comprehensive view of how each line of code con-
tributes to the overall solution, potentially enhancing comprehen-
sion. Interestingly, techniques from both ends of the engagement
spectrum—Lead-and-Reveal and Trace-and-Predict—showed
similar improvements over the Baseline without causing exces-
sive friction. This indicates that these contrasting approaches are
equally valuable and warrant further investigation.

5 FINAL DESIGN ITERATION

To further explore the design space, we iterated on the Lead-and-
Reveal and Trace-and-Predict techniques based on participant
feedback from Study 1. We focused on these techniques as they
effectively balanced performance and imposed friction. Addition-
ally, We updated all techniques, including the Baseline, to provide
line-by-line explanations on hover, inspired by [119]. Below, we
describe the updates to the two techniques.

5.1 Lead-and-Reveal (V2)

Instead of using multiple-choice questions, we updated the tech-
nique to ask short-answer questions about the functionality of the
next step, requiring users to provide natural language descriptions.
Each guiding question is now preceded by extensive context, to
properly guide the user to think about the next step. Additionally,
users receive feedback via an LLM prompt that checks their re-
sponse, offering hints or pointing out missing detail. We also added
on-hover explanations for each line of revealed code.

We improved question quality by enhancing the LLM prompt
with chain-of-thought prompting techniques [114]. The prompt first
decomposes the code solution into a hierarchical JSON, explaining
decisions at the subgoal level to each line of code. We found that
this additional step significantly improved the quality of the guiding
questions.

5.2 Trace-and-Predict (V2)

Previously, value prediction questions focused on single lines of
code, which participants found too easy. The technique now asks
about blocks of code, such as loops, conditionals, or multiple lines

Kazemitabaar et al.

with similar goal. Additionally, users may need to predict up to two
variables to address more complex scenarios. The technique is also
updated to include on-hover explanations for each line.

Additionally, we merged this technique with the technique from
Explain-before-Usage. After predicting variable values, users are
prompted to explain the purpose of the highlighted code. This was
intended to match the new difficulty level of Lead-and-Reveal
(V2), which now requires explanations for each line rather than
multiple-choice responses.

6 STUDY 2: PRE VS. POST ENGAGEMENT

Building upon Study 1, we designed Study 2 to provide a deeper
examination of the differences between the two updated techniques.
While Study 1 had participants engage with only one technique,
Study 2 adopted a within-subjects design to allow for direct com-
parison across techniques. Our objective was to evaluate:

• RQ1 [Performance]: How effectively do the updated cog-
nitive engagement techniques affect the transfer of learned
programming concepts to isomorphic coding tasks without
AI assistance?

• RQ2 [Friction]: What level of friction do the updated
techniques introduce, as measured by task completion time
and perceived cognitive load?

• RQ3 [Metacognitive Self-Assessment]:How do the tech-
niques impact participants’ ability to accurately assess their
own performance compared to actual task performance?

• RQ4 [Perceptions]: How do participants perceive the us-
ability and effectiveness of each technique, and how willing
they are to adopt these techniques in future programming
tasks?

6.1 Methodology

This study used the same experiment tool used in the previous study
(Section 4.1). A key challenge in designing this studywas to increase
the sample size in order to detect a potential effect, based on the
power analysis conducted after Study 1 (Section 4.3). The within-
subjects design would allow us to collect data on each technique
from every participant. However, managing the study’s duration
posed another challenge. We aimed to ensure that participants had
sufficient training and exposure to each technique to observe an
effect, whileminimizing learning effects and preventing fatigue. The
following sections describe how these challenges were addressed.

6.1.1 Participants. We recruited 42 participants (27 men, 15
women, 0 non-binary) from a similar population of Study 1 (stu-
dents taking a data structures class), but at a different semester.
Participants were pre-screened to ensure they were comfortable
reading and writing in English, confident in their python program-
ming skills, and eager to learn how to design complex algorithms.
Informed consent was obtained before the study began, and all
participants received $50.

6.2 Study Procedure

As shown in Fig. 6, this study consisted of two phases: training
with cognitive engagement techniques and evaluation, which we
explain in detail below.

• Phase 1. [Training] 3 Tasks with Lead-and-Reveal,

Trace-and-Predict, and Baseline. Unlike Study 1,
this study did not include a pre-test as all participants
experienced using the updated version of all three tech-
niques: Lead-and-Reveal, Trace-and-Predict, and Base-
line. The study lasted 2.5 hours, including a 15-minute
break, and was conducted remotely, using MS Teams. All
participants were instructed to join from a quiet and com-
fortable place, and share their screens to the experimenter
for moderation and resolving any potential issues.
Similar to the initial study, the experiment tool provided
the same self-paced experience for all participants. The
process started with watching a video that explained the
study procedure. The training tasks with the three cogni-
tive engagement techniques were grouped into three topics:
stacks, queues, and double-ended queues (after careful con-
sideration with the course instructor). Each topic included
two tasks, a warm-up task and a training task. Topics were
presented at the same order, while the techniques for which
they used each topic were fully counter-balanced between
the participants to reduce order effect. The assigned order
of techniques for each participant was included in each par-
ticipant’s account information. For each topic, participants
first watched a video that introduced it to the technique
for which they were assigned to, followed by working on
a warm-up task for 5 minutes, and then the main task of
that topic for 15 minutes. Similar to the first study, before
each coding task participants were given the task descrip-
tion and test-cases and were asked to check how confident
they were in understanding the task before proceeding to
working on the task with the AI and the assigned technique.
After using the cognitive engagement technique to work on
the task, and after finishing the main training task for each
topic, participants were given the NASA Task Load Index
(TLX) questionnaire, followed a 5-point Likert-question that
asked how confident they are in their ability to indepen-
dently write, modify, or extend code of similar complexity
of the task that they just worked on without AI. This value
was later used to calculate the correlation between their
perceived and actual performance. Participants were then
asked to take a short break, before proceeding to working
on the evaluation tasks.

• Phase 2. [Evaluation] 3 Topics × 2 Coding Tasks + Sur-

vey. The evaluation tasks included three topics, each with
two coding tasks. Tasks within each topic were designed to
require applying the concepts used in the AI-generated code
solution of their corresponding training tasks. To ensure
ecological validity and simulate a task that would happen
in reality, the tasks were designed to require participants
to manually extend code of similar complexity to the tasks
they were trained on with AI. Therefore, we designed six
fill-in-the-blank tasks, in which a starter code was provided,
and three to five important lines of code within each task
was erased and were asked by participants to solve manu-
ally, without AI assistance. A timer was displayed on top
of each evaluation task and participants were asked to skip
the task after 10 minutes.

Design Space of Cognitive Engagement Techniques with AI-Generated Code

Figure 6: Study 2 Procedure Overview: Participants used each technique to learn complex coding tasks about three topics:

queue, stack, and double-ended queue (deque). Each topic involved four steps: a short video tutorial (2 min), a warm-up task (5

min), a main task (15 min), and a questionnaire (3 min). After a 15-minute break, participants complete two evaluation tasks

(10 min each) for each technique without AI assistance. Techniques during training were fully counterbalanced, while the

topics had the same order in both training and evaluation phases of the experiment.

Lastly, participants were given a short questionnaire in
which they were asked several long-answer questions to
explain their likes, dislikes, and willingness to use each of
the two final code engagement techniques.

6.2.1 Data Analysis. To evaluate the performance on the manual
coding tasks, we used a simple rubric that focused on the missing
lines that participants were asked to fill. Participants only received
a full mark for that line if their code for that line was fully cor-
rect. Sometimes participants’ solution included additional lines of
code, in such cases, they would receive full marks only if it did not
change the main concept and how the task was using the given
data structure for solving the task, otherwise, they did not receive
marks.

In this study, we introduced another metric to determine friction
created by each technique: participants’ accuracy on answering
the questions when participants were using each of the Lead-and-
Reveal and Trace-and-Predict techniques which included sev-
eral questions.We collected the number of questions that was asked,
and how many attempts they required to correctly solve it. Partici-
pants received 100% for answering correctly on the first attempt,
50% if they answered correctly on the second attempt, and 0% if they
required a third attempt (as the correct answer was provided after-
ward). For each participant, we calculated the average accuracy for
each question type, by determining the mean of their performance
across all prompted questions. We looked at all three comparisons,
therefore, an alpha value of 𝛼 = 0.05

3 = 0.017 is used to determine
statistical significance.

6.3 RQ1 [Performance] How effectivel are the

techniques in supporting learning?

A Friedman test did not show a statistical difference between learn-
ers’ performance on the post-test evaluation tasks (𝜒2 = 3.79,
𝑝 = .150). The Trace-and-Predict technique achieved the highest
mean (𝑀 = 64.3, 𝑆𝐷 = 34.1), followed by Baseline (𝑀 = 57.6,
𝑆𝐷 = 39.2), and Lead-and-Reveal (𝑀 = 55.0, 𝑆𝐷 = 41.1).

6.4 RQ2 [Friction] What level of friction do the

techniques introduce?

A Friedman test revealed a statistically significant difference in
completion times among the techniques (𝜒2 (2, 𝑁 = 30) = 37.80, 𝑝 <

.001; completion times were not normally distributed as indicated
by a Shapiro-Wilk test). The Baseline technique resulted in the
shortest completion time (𝑀 = 470.9, 𝑆𝐷 = 318.2), followed by
Lead-and-Reveal (𝑀 = 857.4, 𝑆𝐷 = 298.6), while Trace-and-
Predict (𝑀 = 1251.2, 𝑆𝐷 = 469.8) took almost three times longer
than the Baseline to complete.

In terms of the accuracy of learners’ responses to the questions
prompted by each technique, for theTrace-and-Predict technique,
learners were asked an average of 8.3 tracing questions (to predict
values) and 3.7 short-answer questions to explain the highlighted
part of the code. For the Lead-and-Reveal technique, learners were
asked an average of 8.7 questions. Learners performed significantly
better on the Trace-and-Predict technique (𝑀 = 76.3%, 𝑆𝐷 =

14.2%) compared to their performance on the Lead-and-Reveal
technique (𝑀 = 58.0%, 𝑆𝐷 = 12.4%), as indicated by a paired t-test
(𝑝 < .001).

The Task Load Index asked participants specifically about their
cognitive load to understand the AI-generated code. For analysis, we
averaged the results on the six subscales across the three techniques.
A Repeated-measures ANOVA test (since task load index passed
normality with a Shapiro-Wilk test) showed that task load across
was statistically different across the three techniques (𝐹 = 7.4,
𝑝 = .001), with the Trace-and-Predict having the highest task
load index (𝑀 = 67.1, 𝑆𝐷 = 13.4), while the task load showed no
statistical difference between the Baseline (𝑀 = 58.9, 𝑆𝐷 = 14.7)
and Lead-and-Reveal (𝑀 = 59.6, 𝑆𝐷 = 11.9) techniques.

On particular task load subscales, a Friedman test showed sta-
tistically significance on the temporal subscale (𝑝 < 0.001) and a
Wilcoxon signed rank showed the Trace-and-Predict technique
having the highest temporal demand (𝑀 = 75.2, 𝑆𝐷 = 19.2). while
it was similar between Baseline (𝑀 = 55.2, 𝑆𝐷 = 24.1) and the
Lead-and-Reveal technique (𝑀 = 62.9, 18.0). A similar effect was
seen across the physical (𝑝 = 0.019), frustration (𝑝 = 0.021), and per-
formance (𝑝 = 0.039) subscales in which the Trace-and-Predict
had a higher demand, while the Lead-and-Reveal had a similar de-
mand compared to the Baseline technique, while mental demand,
perceived effort, and physical demand was similar across the three
techniques.

Kazemitabaar et al.

6.5 RQ3 [Metacognitive Self-Assessment] How

do the techniques impact the ability to

assess one’s own performance?

A Spearman correlation analysis examined the alignment between
participants’ perceived ability (self-reported via Likert-scale re-
sponses) and their actual ability (measured through post-test man-
ual coding tasks) across the three techniques. The Lead-and-
Reveal intervention showed a moderate, significant correlation,
𝑟 = .26, 𝑝 = .017, indicating a better alignment of perceived and ac-
tual abilities. The Baseline technique had a weak, non-significant
correlation 𝑟 = .16, 𝑝 = .136, and the Trace-and-Predict tech-
nique similarly showed no significant correlation, 𝑟 = .15, 𝑝 = .171.
These results suggest that the Lead-and-Reveal technique sup-
ported participants’ self-awareness during their engagement with
the AI-generated code more effectively compared to the other tech-
niques.

6.6 RQ4 [Perceptions] How do participants

perceive each technique?

After the second study, participants were asked about their likes,
dislikes, and willingness to use each tool. Our qualitative analysis
on their responses revealed the following themes:

6.6.1 Lead-and-Reveal (V2). Participants frequently mentioned
that the tool facilitated guided problem-solving and provided step-
by-step guidance (n=26), which promoted logical thinking (n=17).
They appreciated how it enhanced their understanding of the code
structure (n=10), offered hints (n=11), and provided detailed feed-
back on mistakes (n=6). However, participants also pointed out
several drawbacks: lack of flexibility in the implementation (n=10),
being a time-consuming process (n=9), and difficulty in interpreting
certain feedback (n=8).

6.6.2 Trace-and-Predict (V2). The most common positive feed-
back centered around real-time variable tracking (n=18). Partici-
pants also appreciated the newly added short-answer questions and
provided feedback (n=14), which helped them better understand
the generated code (n=14). Some compared the experience to us-
ing debugging tools (n=10), as it enabled them to visualize code
execution (n=7).

On the downside, 15 participants expressed reluctance to use the
technique, citing its time-consuming nature and inefficiency for
simple or long codes (n=7). Others found the questions too simple
or repetitive (n=7). Additionally, some participants (n=6) reported
experiencing disruptions to their workflow (n=6).

6.7 Summary of Results

In summary, there was no significant difference in performance
across the three techniques. However, Lead-and-Reveal improved
participants’ alignment between perceived and actual ability with-
out increasing perceived task load, despite taking 1.82x longer than
Baseline. Trace-and-Predict, while taking 2.66x longer, intro-
duced higher friction. Participants preferred Lead-and-Reveal
for its support in problem-solving and computational thinking, ad-
dressing key challenges in AI-assisted learning by actively engaging
users in the process. While this warrants future studies to explore

the long-term impact and scalability of these techniques, our cur-
rent results point to the effectiveness of Lead-and-Reveal

in fostering self-awareness and enhancing problem-solving

skills during AI-assisted programming.

7 DISCUSSION AND FUTUREWORK

Our results indicate that the Lead-and-Reveal technique achieved
the highest performance in Study 1 (although not statistically sig-
nificant) and demonstrated the best alignment between perceived
and actual learning in Study 2, without increasing cognitive load
compared to Baseline in both studies. To facilitate further research
and usage, we have made the Lead-and-Reveal technique and an
accompanying task builder publicly available at https://lead-and-
reveal.vercel.app, enabling others to create new tasks using this
technique.

In the rest of this section, we discuss the limitations of our work,
synthesize design implications, and propose directions for future
work.

7.1 Limitations

Our results are limited by the small sample size in Study 1 and lim-
ited exposure of participants to each technique in Study 2. These
factors may explain the lack of observed statistical effects. Addition-
ally, both studies focused on algorithm-heavy tasks, limiting task
diversity. While tasks involving unfamiliar syntax or APIs were
considered (as in Yan et al.’s study [119]), we focused on tasks that
posed a greater challenge for engagement with AI-generated code
beyond simple memorization. Instead our tasks require engagement
from multiple angles including decomposition, pattern recognition,
data representation, abstraction, and algorithm design. Although
this may limit the generalizability of our results, we believe our
study addresses the most critical aspects of the issue.

In our studies, we assumed AI-generated solutions were correct,
although LLMs can generate incorrect code. For techniques like
Trace-and-Predict and Explain-before-Usage, where the code
is displayed before user interaction, this assumption is less problem-
atic since users can read and test the code for verification. However,
for techniques that involve user engagement before revealing the
final solution, this could reduce perceived value of the interaction
if the final code is incorrect. Although this can be mitigated by
improved models and techniques (e.g., Chain-of-Thought [114] that
power recent models like GPT-o1), future techniques could ver-
ify AI-generated code by running test cases, engaging users only
if the tests pass. Additionally, the techniques did not allow users
to ask follow-up questions from the AI. Future research could ex-
plore follow-up interactions as another metric for user engagement
with AI-generated code. Participants were also assigned to specific
techniques in our experiments, we envision that in real-world set-
tings, users would have the option to choose their preferred type
of friction. Future work could explore providing this agency and
examine user preferences over time. These simplifications in our
study designs ensured consistency and allowed us to focus on eval-
uating the effectiveness of the types of friction introduced with
each technique.

Design Space of Cognitive Engagement Techniques with AI-Generated Code

7.2 Friction-Induced AI

To ensure long-term productivity gains, researchers in human-AI
interaction have proposed various concepts, such as promoting
‘metacognitive’ reflection [106], antagonistic or sycophantic AI
[14], or making AI act as coach [48], or AI as a provocateur [97].
A common theme among these concepts, is a call for action that
AI should augment and not automate. In alignment with these ap-
proaches, we introduce Friction-Induced AI, wherein the AI does
not allow users to use its generated solution immediately. Instead,
it engages the user in the process of generation, while challenging
them (similar to Lead-and-Reveal) and providing opportunities
for reflection. We believe this concept generalizes beyond just AI-
assisted programming but human-AI interaction more generally.
The term “friction” here does not refer to creating frustration or
unnecessary difficulty. Rather, it refers to temporarily slowing the
user’s interaction, ensuring they engage critically, rather than pas-
sively using AI’s output. However, our results—specifically in code
generation—show that for effective outcomes, friction must be prop-
erly designed. Below we highlight key dimensions in effectively
designing Friction-Induced AI, particularly in AI-assisted program-
ming.

7.2.1 Effective Friction Type. An interesting finding from the sec-
ond study (Section 6) was that participants performed significantly
less accurately on the leading short-answer questions in Lead-and-
Reveal (58%) compared to Trace-and-Predict (76%), indicating
that users were more challenged by the questions in Lead-and-
Reveal. Notably, despite the increased challenge, the use of Lead-
and-Reveal did not result in a higher cognitive load compared to
Baseline, whereas Trace-and-Predict did. This suggests that ef-
fective and beneficial friction should be designed to engage users in
meaningful activities, similar to Lead-and-Reveal, which engaged
users in the problem-solving aspect of the task. The technique also
allowed reflection in a short, interactive conversation with the AI.
Similarly, Solve-Code-Puzzle provided a scaffolded approach to
constructing code from scrambled code blocks, which previous re-
search has shown to be both fun and engaging without imposing
high cognitive demands [19, 87, 115].

Additionally, the Lead-and-Reveal technique inherently has
gamification in its engagement and learning process: the next line
of code is revealed only after the user successfully explains the
action required in that line. This could be a rewarding experience
and increase motivation while engaging the user in a process that
mirrors real-world problem-solving. However, not all tasks are
solved linearly, from top to bottom. Often, code is constructed
from a combination of patterns that are distributed throughout
the code. Future tools should therefore focus on decomposing code
hierarchically and guiding users in the hierarchical decision making
process.

In contrast, effective friction should avoid engaging the user
in simple and repetitive tasks like typing over generated code
(Guided-Write-Over), or merely translating pseudocode to code
(Interactive-Pseudo-Code). It should also avoid tasks where the
engagement does not create new knowledge like repeatedly tracing
values of different variables (Trace-and-Predict), or confusing the
user by mixing correct and incorrect code (Verify-and-Review).

7.2.2 Beyond Code Generation. AI-assisted programming extends
beyond mere code generation or completion. It includes various
scenarios where introducing appropriate friction can enhance cog-
nitive engagement and help prevent skill degradation. In these
contexts, AI operates autonomously, solving a user’s problem like
an agent without additional user involvement. Here we discuss two
particular scenarios: debugging and AI-assisted decision making.

First, when AI is used for debugging and fixing a user’s code—
particularly for novice or end-user programmers [66]—it often gen-
erates the fixed solution. However, debugging is a fundamental
computational thinking skill [117], and must be practiced to en-
sure programming proficiency. Researchers have already explored
introducing similar forms of friction to support help-seeking behav-
iors. CodeAid [64] highlights incorrect lines of code with suggested
fixes that users must apply themselves. Similarly, CodeTailor [51]
generates a scrambled version of the fixed code, requiring users to
rearrange it, similar to Solve-Code-Puzzle. Another form of mean-
ingful friction could involve engaging the user in the step-by-step
debugging process alongside the AI, similar to Lead-and-Reveal.
This approach could enhance debugging skills while offering a
greater sense of accomplishment.

Second, when AI is being used to make decisions for program-
ming tasks—especially in scenarios involving complex trade-offs,
such as machine learning, data analysis [38, 39], and software de-
sign [116]—it is crucial to encourage programmers to think critically
about these decisions. Reflecting on these decisions promotes their
critical thinking and problem-solving skills, and their ability to
verify AI-generated code and decisions. Researchers are already
developing tools to assist novices in making better software design
and architectural decisions with generative AI [21]. However, when
AI autonomously solves tasks for the user, there is a risk that this
could negatively impact their decision-making skills. A more en-
gaged, user-involved AI assistance might result in better decisions
and improved mental models, an area that future research should
explore.

7.2.3 Beyond Educational Contexts. Lastly, an important design
implication emerges from the synergy between adding friction and
enhanced verification in AI-assisted programming. Although we
studied friction in the context of programming with novices learn-
ing about complex algorithmic tasks, but friction can potentially
be suitable in productivity scenarios as well. Friction-induced AI
can potentially prevent long-term productivity losses, as well as
enhance short-term verification of AI outputs, leading to immedi-
ate productivity gains. Introducing friction, like cognitive forcing
functions, has been shown to support AI-assisted decision-making
and reduce over-reliance on AI [12]. Similarly, adding intervention
points and employing progressive disclosure has been another type
of friction that has been demonstrated to increase programmers’
sense of control and ability to verify outputs during AI-assisted
data analysis [63].

This dual benefit underscores how adding meaningful and effec-
tive friction could make it suitable for productivity scenarios and
not just for educational contexts. It not only improves short-term
verification and productivity but also helps prevent long-term pro-
ductivity loss by augmenting human cognition and encouraging
higher-order cognitive engagement. As a result, techniques like

Kazemitabaar et al.

Lead-and-Reveal could be designed to incorporate intervention
points that allows users to progressively verify and correct the AI’s
output, while also promoting deeper learning as code is generated.

8 CONCLUSION

Over-reliance on AI poses considerable risk to the development of
computational thinking skills among novice programmers. How-
ever, as generative AI continues to change the landscape of program-
ming, it is essential to harness its benefits by understanding how
to effectively integrate it into educational settings. In this paper,
we introduced the concept of friction-induced AI, which requires
users to cognitively engage with AI-generated content (specifically
code), to enhance short-term productivity gains while preventing
long-term productivity loss due to over-reliance on AI.

We systematically explored the design space of cognitive en-
gagement techniques, developing seven distinct interfaces that
introduce varying levels and types of engagement. Through an it-
erative design process and two empirical evaluations, we identified
that the Lead-and-Reveal technique balances imposed friction,
learning gains, and improved self-assessment accuracy. Specifi-
cally, Lead-and-Reveal improved the alignment between learns’
perceived and actual coding abilities without increasing cognitive
load, demonstrating its potential to improve learning and prevent
over-reliance. Beneficial friction can be viewed as a supportive
scaffold that empowers students rather than acting as an obstacle.
By requiring users to engage actively, these techniques promote
metacognitive reflection and improve problem-solving skills. Fu-
ture research should explore more diverse programming tasks and
user-driven engagement strategies to further validate these findings.
Ultimately, designing AI tools that support deeper cognitive reflec-
tion remains crucial to maintaining both short-term productivity
and long-term skill development in programming.

ACKNOWLEDGMENTS

We would like to thank the computing education researchers for
their valuable feedback on our techniques. We also sincerely ap-
preciate the course instructors for their input on the design of
the programming tasks, and we are grateful to the students who
participated in our experiments.

REFERENCES

[1] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Inves-
tigating Novice Programming Mistakes in Large-Scale Student Data. In Pro-

ceedings of the 46th ACM Technical Symposium on Computer Science Education

(Kansas City, Missouri, USA) (SIGCSE ’15). ACM, New York, NY, USA, 522–527.
https://doi.org/10.1145/2676723.2677258

[2] Hamsa Bastani, Osbert Bastani, Alp Sungu, Haosen Ge, Özge Kabakcı, and
Rei Mariman. 2024. Generative AI Can Harm Learning. Research Paper. The
Wharton School. https://doi.org/10.2139/ssrn.4895486 Available at SSRN:
https://ssrn.com/abstract=4895486 or http://dx.doi.org/10.2139/ssrn.4895486.

[3] Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error
Messages. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). ACM, New York,
NY, USA, 126–131. https://doi.org/10.1145/2839509.2844584

[4] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for
Novice Programmers. In Proceedings of the 2016 ACM Conference on Innovation

and Technology in Computer Science Education (Arequipa, Peru) (ITiCSE ’16).
ACM, New York, NY, USA, 296–301. https://doi.org/10.1145/2899415.2899463

[5] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education

V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for ComputingMachinery,
New York, NY, USA, 500–506. https://doi.org/10.1145/3545945.3569759

[6] Timothy C Bell, Ian H Witten, and Mike Fellows. 1998. Computer Science

Unplugged: Off-line Activities and Games for All Ages (1st ed.). Computer Science
Unplugged.

[7] Benjamin S Bloom, Max D Engelhart, Edward J Furst, Walker H Hill, David R
Krathwohl, et al. 1956. Taxonomy of Educational Objectives: The Classification

of Educational Goals. Handbook 1: Cognitive Domain. Longman New York.
[8] Jeffrey Bonar and Elliot Soloway. 2013. Preprogramming knowledge: A ma-

jor source of misconceptions in novice programmers. In Studying the novice

programmer. Psychology Press, 325–353.
[9] Christian P. Brackmann, Marcos Román-González, Gregorio Robles, Jesús

Moreno-León, Ana Casali, and Dante Barone. 2017. Development of Com-
putational Thinking Skills through Unplugged Activities in Primary School. In
Proceedings of the 12thWorkshop on Primary and Secondary Computing Education

(Nijmegen, Netherlands) (WiPSCE ’17). Association for Computing Machinery,
New York, NY, USA, 65–72. https://doi.org/10.1145/3137065.3137069

[10] Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira Dontcheva, and Scott R.
Klemmer. 2009. Two studies of opportunistic programming: interleaving
web foraging, learning, and writing code. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (Boston, MA, USA) (CHI
’09). Association for Computing Machinery, New York, NY, USA, 1589–1598.
https://doi.org/10.1145/1518701.1518944

[11] Neil C.C. Brown and Amjad Altadmri. 2014. Investigating Novice Programming
Mistakes: Educator Beliefs vs. Student Data. In Proceedings of the Tenth Annual

Conference on International Computing Education Research (Glasgow, Scotland,
United Kingdom) (ICER ’14). ACM, New York, NY, USA, 43–50. https://doi.org/
10.1145/2632320.2632343

[12] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos. 2021. To Trust
or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in
AI-assisted Decision-making. Proc. ACM Hum.-Comput. Interact. 5, CSCW1,
Article 188 (apr 2021), 21 pages. https://doi.org/10.1145/3449287

[13] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos. 2021. To Trust
or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in
AI-assisted Decision-making. Proc. ACM Hum.-Comput. Interact. 5, CSCW1 (apr
2021).

[14] Alice Cai, Ian Arawjo, and Elena L. Glassman. 2024. Antagonistic AI.
arXiv:2402.07350 https://arxiv.org/abs/2402.07350

[15] Preetha Chatterjee, Minji Kong, and Lori Pollock. 2020. Finding help with
programming errors: An exploratory study of novice software engineers’ focus
in stack overflow posts. Journal of Systems and Software 159 (2020), 110454.
https://doi.org/10.1016/j.jss.2019.110454

[16] Michelene T. H. Chi and Ruth Wylie. 2014. The ICAP Framework: Linking
Cognitive Engagement to Active Learning Outcomes. Educational Psychologist
49, 4 (2014), 219–243. https://doi.org/10.1080/00461520.2014.965823

[17] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A. Becker, and Brent N. Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the

55th ACM Technical Symposium on Computer Science Education V. 1 (Portland,
OR, USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY,
USA, 296–302. https://doi.org/10.1145/3626252.3630909

[18] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing
Syntax Error Messages Appears Ineffectual. In Proceedings of the 2014 Conference
on Innovation & Technology in Computer Science Education (Uppsala, Sweden)
(ITiCSE ’14). ACM, New York, NY, USA, 273–278. https://doi.org/10.1145/
2591708.2591748

[19] Paul Denny, Andrew Luxton-Reilly, and Beth Simon. 2008. Evaluating a
new exam question: Parsons problems. In Proceedings of the Fourth Interna-

tional Workshop on Computing Education Research (Sydney, Australia) (ICER
’08). Association for Computing Machinery, New York, NY, USA, 113–124.
https://doi.org/10.1145/1404520.1404532

[20] Paul Denny, David H. Smith, Max Fowler, James Prather, Brett A. Becker, and
Juho Leinonen. 2024. Explaining Code with a Purpose: An Integrated Approach
for Developing Code Comprehension and Prompting Skills. In Proceedings of

the 2024 on Innovation and Technology in Computer Science Education V. 1 (Milan,
Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA,
283–289. https://doi.org/10.1145/3649217.3653587

[21] J Andrés Díaz-Pace, Antonela Tommasel, and Rafael Capilla. 2024. Helping
Novice Architects to Make Quality Design Decisions Using an LLM-Based
Assistant. In Software Architecture. Springer Nature Switzerland, Cham, 324–
332.

[22] Benedict Du Boulay. 2013. Some difficulties of learning to program. In Studying

the novice programmer. Psychology Press, 283–299.
[23] Alireza Ebrahimi. 1994. Novice programmer errors: Language constructs and

plan composition. International Journal of Human Computer Studies 41, 4 (1994),
457–480.

[24] Barbara J. Ericson, James D. Foley, and Jochen Rick. 2018. Evaluating the
Efficiency and Effectiveness of Adaptive Parsons Problems. In Proceedings of the

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.2139/ssrn.4895486
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.1145/2899415.2899463
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1145/2632320.2632343
https://doi.org/10.1145/3449287
https://arxiv.org/abs/2402.07350
https://arxiv.org/abs/2402.07350
https://doi.org/10.1016/j.jss.2019.110454
https://doi.org/10.1080/00461520.2014.965823
https://doi.org/10.1145/3626252.3630909
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/2591708.2591748
https://doi.org/10.1145/1404520.1404532
https://doi.org/10.1145/3649217.3653587

Design Space of Cognitive Engagement Techniques with AI-Generated Code

2018 ACM Conference on International Computing Education Research (Espoo,
Finland) (ICER ’18). Association for Computing Machinery, New York, NY, USA,
60–68. https://doi.org/10.1145/3230977.3231000

[25] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving parsons
problems versus fixing and writing code. In Proceedings of the 17th Koli Calling

International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’17). Association for Computing Machinery, New York, NY, USA, 20–29.
https://doi.org/10.1145/3141880.3141895

[26] K Anders Ericsson, Ralf T Krampe, and Clemens Tesch-Römer. 1993. The role
of deliberate practice in the acquisition of expert performance. Psychological
review 100, 3 (1993), 363. https://doi.org/10.1037/0033-295X.100.3.363

[27] Ethan Fast, Daniel Steffee, Lucy Wang, Joel R. Brandt, and Michael S. Bernstein.
2014. Emergent, Crowd-scale Programming Practice in the IDE. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (Toronto,
Ontario, Canada) (CHI ’14). ACM, New York, NY, USA, 2491–2500. https:
//doi.org/10.1145/2556288.2556998

[28] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos,
James Prather, and Brett A. Becker. 2023. My AI Wants to Know if This Will Be
on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In Pro-

ceedings of the 25th Australasian Computing Education Conference (Melbourne,
VIC, Australia) (ACE ’23). Association for Computing Machinery, New York,
NY, USA, 97–104. https://doi.org/10.1145/3576123.3576134

[29] T. Flowers, J. Jackson, and C. Carver. 2004. Empowering students and building
confidence in novice programmers through Gauntlet. In 34th Annual Frontiers

in Education, 2004. FIE 2004.(FIE), Vol. 00. T3H/10–T3H/13 Vol. 1. https://doi.
org/10.1109/FIE.2004.1408551

[30] Krzysztof Z. Gajos and Lena Mamykina. 2022. Do People Engage Cognitively
with AI? Impact of AI Assistance on Incidental Learning. In Proceedings of the

27th International Conference on Intelligent User Interfaces (Helsinki, Finland)
(IUI ’22). Association for Computing Machinery, New York, NY, USA, 794–806.
https://doi.org/10.1145/3490099.3511138

[31] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets.
In Proceedings of the 36th International Conference on Software Engineering

(Hyderabad, India) (ICSE 2014). ACM, New York, NY, USA, 653–663. https:
//doi.org/10.1145/2568225.2568250

[32] Adam M. Gaweda, Collin F. Lynch, Nathan Seamon, Gabriel Silva de Oliveira,
and Alay Deliwa. 2020. Typing Exercises as Interactive Worked Examples
for Deliberate Practice in CS Courses. In Proceedings of the Twenty-Second

Australasian Computing Education Conference (Melbourne, VIC, Australia)
(ACE’20). Association for Computing Machinery, New York, NY, USA, 105–113.
https://doi.org/10.1145/3373165.3373177

[33] Aashish Ghimire and John Edwards. 2024. Coding with AI: How Are Tools Like
ChatGPT Being Used by Students in Foundational Programming Courses. In
Artificial Intelligence in Education, Andrew M. Olney, Irene-Angelica Chounta,
Zitao Liu, Olga C. Santos, and Ig Ibert Bittencourt (Eds.). Springer Nature
Switzerland, Cham, 259–267.

[34] GitHub. 2024. GitHub Copilot: Your AI Pair Programmer. https://github.com/
features/copilot Accessed: 2024-09-01.

[35] Kate Goddard, Abdul Roudsari, and Jeremy C Wyatt. 2012. Automation bias: a
systematic review of frequency, effect mediators, and mitigators. Journal of the
American Medical Informatics Association 19, 1 (2012), 121–127.

[36] Jean M. Griffin. 2019. Designing Intentional Bugs for Learning. In Proceed-

ings of the 2019 Conference on United Kingdom & Ireland Computing Ed-

ucation Research (Canterbury, United Kingdom) (UKICER ’19). Association
for Computing Machinery, New York, NY, USA, Article 5, 7 pages. https:
//doi.org/10.1145/3351287.3351289

[37] Cornelia S Groe and Alexander Renkl. 2007. Finding and fixing errors in worked
examples: Can this foster learning outcomes? Learning and Instruction 17, 6
(2007), 612–634. https://doi.org/10.1016/j.learninstruc.2007.09.008

[38] Ken Gu, Madeleine Grunde-McLaughlin, Andrew McNutt, Jeffrey Heer, and
Tim Althoff. 2024. How Do Data Analysts Respond to AI Assistance? A Wizard-
of-Oz Study. In Proceedings of the 2024 CHI Conference on Human Factors in

Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing
Machinery, New York, NY, USA, Article 1015, 22 pages. https://doi.org/10.1145/
3613904.3641891

[39] Ken Gu, Ruoxi Shang, Tim Althoff, Chenglong Wang, and Steven M. Drucker.
2024. How Do Analysts Understand and Verify AI-Assisted Data Analyses?. In
Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems

(Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New
York, NY, USA, Article 748, 22 pages. https://doi.org/10.1145/3613904.3642497

[40] Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-based Program
Visualization for Cs Education. In Proceeding of the 44th ACM Technical Sym-

posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).
ACM, New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

[41] Philip J. Guo. 2013. Online python tutor: embeddable web-based program
visualization for cs education. In Proceeding of the 44th ACM Technical Sym-

posium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13).

Association for Computing Machinery, New York, NY, USA, 579–584. https:
//doi.org/10.1145/2445196.2445368

[42] Philip J. Guo. 2023. Six Opportunities for Scientists and Engineers to Learn Pro-
gramming Using AI Tools Such as ChatGPT. Computing in Science & Engineering

25, 3 (2023), 73–78. https://doi.org/10.1109/MCSE.2023.3308476
[43] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and

Clifford A Shaffer. 2017. A basic recursion concept inventory. Computer Science

Education 27, 2 (2017), 121–148. https://doi.org/10.1080/08993408.2017.1414728
arXiv:https://doi.org/10.1080/08993408.2017.1414728

[44] Kyle J. Harms, Dennis Cosgrove, Shannon Gray, and Caitlin Kelleher. 2013.
Automatically Generating Tutorials to Enable Middle School Children to Learn
Programming Independently. In Proceedings of the 12th International Conference

on Interaction Design and Children (New York, New York, USA) (IDC ’13). ACM,
New York, NY, USA, 11–19. https://doi.org/10.1145/2485760.2485764

[45] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R. Klemmer. 2010.
What Would Other Programmers Do: Suggesting Solutions to Error Messages.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(Atlanta, Georgia, USA) (CHI ’10). ACM, New York, NY, USA, 1019–1028. https:
//doi.org/10.1145/1753326.1753478

[46] A. Head, C. Appachu, M. A. Hearst, and B. Hartmann. 2015. Tutorons: Generat-
ing context-relevant, on-demand explanations and demonstrations of online
code. In 2015 IEEE Symposium on Visual Languages and Human-Centric Com-

puting (VL/HCC). 3–12. https://doi.org/10.1109/VLHCC.2015.7356972
[47] Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer. 2018. Augmenting Code

with In Situ Visualizations to Aid Program Understanding. In Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). ACM, New York, NY, USA, Article 532, 12 pages. https:
//doi.org/10.1145/3173574.3174106

[48] Jake Hofman, Daniel G. Goldstein, and David Rothschild. 2023. A Sports Anal-
ogy for Understanding Different Ways to Use AI. Harvard Business Review

(December 2023). https://www.microsoft.com/en-us/research/publication/a-
sports-analogy-for-understanding-different-ways-to-use-ai/

[49] Irene Hou, Owen Man, Sophia Mettille, Sebastian Gutierrez, Kenneth Angelikas,
and Stephen MacNeil. 2024. More Robots are Coming: Large Multimodal
Models (ChatGPT) can Solve Visually Diverse Images of Parsons Problems. In
Proceedings of the 26th Australasian Computing Education Conference (Sydney,
NSW, Australia) (ACE ’24). Association for Computing Machinery, New York,
NY, USA, 29–38. https://doi.org/10.1145/3636243.3636247

[50] Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Computing Students’ Help-
Seeking Preferences. In Proceedings of the 26th Australasian Computing Educa-

tion Conference (Sydney, NSW, Australia) (ACE ’24). Association for Comput-
ing Machinery, New York, NY, USA, 39–48. https://doi.org/10.1145/3636243.
3636248

[51] Xinying Hou, Zihan Wu, Xu Wang, and Barbara J. Ericson. 2024. CodeTailor:
LLM-Powered Personalized Parsons Puzzles for Engaging Support While Learn-
ing Programming. In Proceedings of the Eleventh ACM Conference on Learning

@ Scale (Atlanta, GA, USA) (L@S ’24). Association for Computing Machinery,
New York, NY, USA, 51–62. https://doi.org/10.1145/3657604.3662032

[52] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003.
Identifying and correcting Java programming errors for introductory com-
puter science students. In Proceedings of the 34th SIGCSE Technical Sympo-

sium on Computer Science Education (Reno, Navada, USA) (SIGCSE ’03). As-
sociation for Computing Machinery, New York, NY, USA, 153–156. https:
//doi.org/10.1145/611892.611956

[53] M. Ichinco, W. Hnin, and C. Kelleher. 2016. Suggesting examples to novice
programmers in an open-ended context with the example guru. In 2016 IEEE

Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 230–
231. https://doi.org/10.1109/VLHCC.2016.7739691

[54] Michelle Ichinco, Wint Yee Hnin, and Caitlin L. Kelleher. 2017. Suggesting API
Usage to Novice Programmers with the Example Guru. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). ACM, New York, NY, USA, 1105–1117. https://doi.org/10.1145/
3025453.3025827

[55] Michelle Ichinco and Caitlin Kelleher. 2015. Exploring novice programmer
example use. In 2015 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC). 63–71. https://doi.org/10.1109/VLHCC.2015.7357199
[56] Michelle Ichinco and Caitlin Kelleher. 2018. Semi-automatic Suggestion

Generation for Young Novice Programmers in an Open-ended Context. In
Proceedings of the 17th ACM Conference on Interaction Design and Children

(Trondheim, Norway) (IDC ’18). ACM, New York, NY, USA, 405–412. https:
//doi.org/10.1145/3202185.3202762

[57] J. Jackson, M. Cobb, and C. Carver. 2005. Identifying Top Java Errors for Novice
Programmers. In Proceedings Frontiers in Education 35th Annual Conference.
T4C–T4C. https://doi.org/10.1109/FIE.2005.1611967

[58] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying student misconceptions of programming. In Proceedings of

the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,

https://doi.org/10.1145/3230977.3231000
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1145/2556288.2556998
https://doi.org/10.1145/2556288.2556998
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1109/FIE.2004.1408551
https://doi.org/10.1145/3490099.3511138
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/3373165.3373177
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3351287.3351289
https://doi.org/10.1145/3351287.3351289
https://doi.org/10.1016/j.learninstruc.2007.09.008
https://doi.org/10.1145/3613904.3641891
https://doi.org/10.1145/3613904.3641891
https://doi.org/10.1145/3613904.3642497
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1109/MCSE.2023.3308476
https://doi.org/10.1080/08993408.2017.1414728
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1145/2485760.2485764
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1145/1753326.1753478
https://doi.org/10.1109/VLHCC.2015.7356972
https://doi.org/10.1145/3173574.3174106
https://doi.org/10.1145/3173574.3174106
https://www.microsoft.com/en-us/research/publication/a-sports-analogy-for-understanding-different-ways-to-use-ai/
https://www.microsoft.com/en-us/research/publication/a-sports-analogy-for-understanding-different-ways-to-use-ai/
https://doi.org/10.1145/3636243.3636247
https://doi.org/10.1145/3636243.3636248
https://doi.org/10.1145/3636243.3636248
https://doi.org/10.1145/3657604.3662032
https://doi.org/10.1145/611892.611956
https://doi.org/10.1145/611892.611956
https://doi.org/10.1109/VLHCC.2016.7739691
https://doi.org/10.1145/3025453.3025827
https://doi.org/10.1145/3025453.3025827
https://doi.org/10.1109/VLHCC.2015.7357199
https://doi.org/10.1145/3202185.3202762
https://doi.org/10.1145/3202185.3202762
https://doi.org/10.1109/FIE.2005.1611967

Kazemitabaar et al.

Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New
York, NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[59] Hyeonsu Kang and Philip J. Guo. 2017. Omnicode: A Novice-Oriented Live
Programming Environment with Always-On Run-Time Value Visualizations.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software

and Technology (Québec City, QC, Canada) (UIST ’17). ACM, New York,
NY, USA, 737–745. https://doi.org/10.1145/3126594.3126632

[60] Enkelejda Kasneci, Kathrin Sessler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann,
Eyke Hüllermeier, Stephan Krusche, Gitta Kutyniok, Tilman Michaeli, Claudia
Nerdel, Jürgen Pfeffer, Oleksandra Poquet, Michael Sailer, Albrecht Schmidt,
Tina Seidel, Matthias Stadler, Jochen Weller, Jochen Kuhn, and Gjergji Kasneci.
2023. ChatGPT for good? On opportunities and challenges of large language
models for education. Learning and Individual Differences 103 (2023), 102274.
https://doi.org/10.1016/j.lindif.2023.102274

[61] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings of

the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY,
USA, 23 pages. https://doi.org/10.1145/3544548.3580919

[62] Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2024. How Novices Use LLM-based Code Gener-
ators to Solve CS1 Coding Tasks in a Self-Paced Learning Environment. In Pro-

ceedings of the 23rd Koli Calling International Conference on Computing Education

Research (Koli, Finland) (Koli Calling ’23). Association for ComputingMachinery,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3631802.3631806

[63] Majeed Kazemitabaar, JackWilliams, Ian Drosos, Tovi Grossman, Austin Henley,
Carina Negreanu, and Advait Sarkar. 2024. Improving Steering and Verifica-
tion in AI-Assisted Data Analysis with Interactive Task Decomposition. In
Proceedings of the 37th Annual ACM Symposium on User Interface Software and

Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing Ma-
chinery, New York, NY, USA, 19 pages. https://doi.org/10.1145/3654777.3676345

[64] Majeed Kazemitabaar, Runlong Ye, Xiaoning Wang, Austin Zachary Henley,
Paul Denny, Michelle Craig, and Tovi Grossman. 2024. CodeAid: Evaluating a
Classroom Deployment of an LLM-based Programming Assistant that Balances
Student and Educator Needs. In Proceedings of the CHI Conference on Human

Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for
Computing Machinery, New York, NY, USA, Article 650, 20 pages. https:
//doi.org/10.1145/3613904.3642773

[65] Cazembe Kennedy and Eileen T. Kraemer. 2019. Qualitative Observations of
Student Reasoning: Coding in the Wild. In Proceedings of the 2019 ACM Confer-

ence on Innovation and Technology in Computer Science Education (Aberdeen,
Scotland Uk) (ITiCSE ’19). Association for Computing Machinery, New York,
NY, USA, 224–230. https://doi.org/10.1145/3304221.3319751

[66] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages

- Human Centric Computing. 199–206. https://doi.org/10.1109/VLHCC.2004.47
[67] Yifat Ben-David Kolikant. 2005. Students’ alternative standards for correctness.

In Proceedings of the First International Workshop on Computing Education Re-

search (Seattle, WA, USA) (ICER ’05). Association for Computing Machinery,
New York, NY, USA, 37–43. https://doi.org/10.1145/1089786.1089790

[68] Thomas Kosch, Jakob Karolus, Johannes Zagermann, Harald Reiterer, Albrecht
Schmidt, and Paweł W. Woźniak. 2023. A Survey on Measuring Cognitive
Workload in Human-Computer Interaction. ACM Comput. Surv. 55, 13s, Article
283 (July 2023), 39 pages. https://doi.org/10.1145/3582272

[69] Amruth N. Kumar. 2013. A study of the influence of code-tracing problems on
code-writing skills. In Proceedings of the 18th ACM Conference on Innovation and

Technology in Computer Science Education (Canterbury, England, UK) (ITiCSE
’13). Association for ComputingMachinery, New York, NY, USA, 183–188. https:
//doi.org/10.1145/2462476.2462507

[70] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. 2005. A study of
the difficulties of novice programmers. SIGCSE Bull. 37, 3 (jun 2005), 14–18.
https://doi.org/10.1145/1151954.1067453

[71] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Re-
sistance is Futile": How University Programming Instructors Plan to Adapt
as More Students Use AI Code Generation and Explanation Tools such as
ChatGPT and GitHub Copilot. In Proceedings of the 2023 ACM Conference

on International Computing Education Research - Volume 1 (Chicago, IL, USA)
(ICER ’23). Association for Computing Machinery, New York, NY, USA, 106–121.
https://doi.org/10.1145/3568813.3600138

[72] Michael J. Lee, Faezeh Bahmani, Irwin Kwan, Jilian LaFerte, Polina Charters,
Amber Horvath, Fanny Luor, Jill Cao, Catherine Law, Michael Beswether-
ick, Sheridan Long, Margaret Burnett, and Amy J. Ko. 2014. Principles of
a debugging-first puzzle game for computing education. In 2014 IEEE Sym-

posium on Visual Languages and Human-Centric Computing (VL/HCC). 57–64.
https://doi.org/10.1109/VLHCC.2014.6883023

[73] Tom Lieber, Joel R. Brandt, and Rob C. Miller. 2014. Addressing Misconceptions
About Code with Always-on Programming Visualizations. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). ACM, New York, NY, USA, 2481–2490. https://doi.org/10.
1145/2556288.2557409

[74] Mark Liffiton, Brad E Sheese, Jaromir Savelka, and Paul Denny. 2024. Code-
Help: Using Large Language Models with Guardrails for Scalable Support in
Programming Classes. In Proceedings of the 23rd Koli Calling International Con-

ference on Computing Education Research (Koli, Finland) (Koli Calling ’23). As-
sociation for Computing Machinery, New York, NY, USA, Article 8, 11 pages.
https://doi.org/10.1145/3631802.3631830

[75] Marcia C Linn and Michael J Clancy. 1992. The case for case studies of pro-
gramming problems. Commun. ACM 35, 3 (1992), 121–132.

[76] Raymond Lister, Beth Simon, Errol Thompson, Jacqueline L. Whalley, and
Christine Prasad. 2006. Not seeing the forest for the trees: novice programmers
and the SOLO taxonomy. In Proceedings of the 11th Annual SIGCSE Confer-

ence on Innovation and Technology in Computer Science Education (Bologna,
Italy) (ITICSE ’06). Association for Computing Machinery, New York, NY, USA,
118–122. https://doi.org/10.1145/1140124.1140157

[77] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships between reading, tracing and writing skills in introductory program-
ming. In Proceedings of the Fourth International Workshop on Computing Educa-

tion Research (Sydney, Australia) (ICER ’08). Association for Computing Machin-
ery, New York, NY, USA, 101–112. https://doi.org/10.1145/1404520.1404531

[78] Richard E. Mayer. 1981. The Psychology of How Novices Learn Computer
Programming. ACM Comput. Surv. 13, 1 (mar 1981), 121–141. https://doi.org/
10.1145/356835.356841

[79] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth
Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: a review
of the literature from an educational perspective. Computer Science Ed-

ucation 18, 2 (2008), 67–92. https://doi.org/10.1080/08993400802114581
arXiv:https://doi.org/10.1080/08993400802114581

[80] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2022. Identifying
SQL misconceptions of novices: findings from a think-aloud study. ACM Inroads

13, 1 (feb 2022), 52–65. https://doi.org/10.1145/3514214
[81] Briana B. Morrison, Lauren E. Margulieux, and Mark Guzdial. 2015. Subgoals,

Context, and Worked Examples in Learning Computing Problem Solving. In
Proceedings of the Eleventh Annual International Conference on International

Computing Education Research (Omaha, Nebraska, USA) (ICER ’15). Association
for Computing Machinery, New York, NY, USA, 21–29. https://doi.org/10.1145/
2787622.2787733

[82] Dhawal Mujumdar, Manuel Kallenbach, Brandon Liu, and Björn Hartmann.
2011. Crowdsourcing Suggestions to Programming Problems for Dynamic Web
Development Languages. In CHI ’11 Extended Abstracts on Human Factors in

Computing Systems (Vancouver, BC, Canada) (CHI EA ’11). ACM, New York,
NY, USA, 1525–1530. https://doi.org/10.1145/1979742.1979802

[83] Laurie Murphy, Sue Fitzgerald, Raymond Lister, and Renée McCauley. 2012.
Ability to ’explain in plain english’ linked to proficiency in computer-based
programming. In Proceedings of the Ninth Annual International Conference on

International Computing Education Research (Auckland, New Zealand) (ICER ’12).
Association for Computing Machinery, New York, NY, USA, 111–118. https:
//doi.org/10.1145/2361276.2361299

[84] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler Error Messages: What Can Help Novices?. In Proceedings of the 39th

SIGCSE Technical Symposium on Computer Science Education (Portland, OR,
USA) (SIGCSE ’08). ACM, New York, NY, USA, 168–172. https://doi.org/10.
1145/1352135.1352192

[85] Stephen Oney and Joel Brandt. 2012. Codelets: Linking Interactive Documenta-
tion and Example Code in the Editor. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). ACM,
New York, NY, USA, 2697–2706. https://doi.org/10.1145/2207676.2208664

[86] Joon Sung Park, Rick Barber, Alex Kirlik, and Karrie Karahalios. 2019. A Slow
Algorithm Improves Users’ Assessments of the Algorithm’s Accuracy. Proc.
ACM Hum.-Comput. Interact. 3, CSCW, Article 102 (nov 2019), 15 pages. https:
//doi.org/10.1145/3359204

[87] Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun
and effective learning tool for first programming courses. In Proceedings of

the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[88] Barry Peddycord III, Andrew Hicks, and Tiffany Barnes. 2014. Generating hints
for programming problems using intermediate output. In Educational Data

Mining 2014. Citeseer.
[89] Raymond S. Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler

Error Messages Help Students?: Results Inconclusive.. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education (Seattle,
Washington, USA) (SIGCSE ’17). ACM, New York, NY, USA, 465–470. https:
//doi.org/10.1145/3017680.3017768

https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/3126594.3126632
https://doi.org/10.1016/j.lindif.2023.102274
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3631802.3631806
https://doi.org/10.1145/3654777.3676345
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3613904.3642773
https://doi.org/10.1145/3304221.3319751
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/1089786.1089790
https://doi.org/10.1145/3582272
https://doi.org/10.1145/2462476.2462507
https://doi.org/10.1145/2462476.2462507
https://doi.org/10.1145/1151954.1067453
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1109/VLHCC.2014.6883023
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/2556288.2557409
https://doi.org/10.1145/3631802.3631830
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/356835.356841
https://doi.org/10.1145/356835.356841
https://doi.org/10.1080/08993400802114581
https://arxiv.org/abs/https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/3514214
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/2787622.2787733
https://doi.org/10.1145/1979742.1979802
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/2361276.2361299
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/3359204
https://doi.org/10.1145/3359204
https://doi.org/10.1145/3017680.3017768
https://doi.org/10.1145/3017680.3017768

Design Space of Cognitive Engagement Techniques with AI-Generated Code

[90] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Generative AI
Revolution in Computing Education. In Proceedings of the 2023 Working Group

Reports on Innovation and Technology in Computer Science Education (Turku,
Finland) (ITiCSE-WGR ’23). Association for Computing Machinery, New York,
NY, USA, 108–159. https://doi.org/10.1145/3623762.3633499

[91] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On Novices’ Interaction
with Compiler Error Messages: A Human Factors Approach. In Proceedings

of the 2017 ACM Conference on International Computing Education Research

(Tacoma, Washington, USA) (ICER ’17). ACM, New York, NY, USA, 74–82. https:
//doi.org/10.1145/3105726.3106169

[92] James Prather, Brent N Reeves, Juho Leinonen, Stephen MacNeil, Arisoa S
Randrianasolo, Brett A. Becker, Bailey Kimmel, Jared Wright, and Ben Briggs.
2024. The Widening Gap: The Benefits and Harms of Generative AI for
Novice Programmers. In Proceedings of the 2024 ACM Conference on Interna-

tional Computing Education Research - Volume 1 (Melbourne, VIC, Australia)
(ICER ’24). Association for Computing Machinery, New York, NY, USA, 469–486.
https://doi.org/10.1145/3632620.3671116

[93] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difficulties in Introductory Programming: A Literature Review. ACM Trans.

Comput. Educ. 18, 1, Article 1 (oct 2017), 24 pages. https://doi.org/10.1145/
3077618

[94] Noa Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of
the comprehension of OOP concepts by novices. Computer Science Edu-

cation 15, 3 (2005), 203–221. https://doi.org/10.1080/08993400500224310
arXiv:https://doi.org/10.1080/08993400500224310

[95] Evan F Risko and Sam J Gilbert. 2016. Cognitive offloading. Trends in cognitive

sciences 20, 9 (2016), 676–688.
[96] William Robinson. 2016. From Scratch to Patch: Easing the Blocks-Text Transi-

tion. In Proceedings of the 11th Workshop in Primary and Secondary Computing

Education (Münster, Germany) (WiPSCE ’16). Association for Computing Ma-
chinery, New York, NY, USA, 96–99. https://doi.org/10.1145/2978249.2978265

[97] Advait Sarkar. 2024. AI Should Challenge, Not Obey. Commun. ACM (Sept.
2024), 5 pages. https://doi.org/10.1145/3649404 Online First.

[98] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023.
Thrilled by Your Progress! Large Language Models (GPT-4) No Longer Struggle
to Pass Assessments in Higher Education Programming Courses. In Proceedings

of the 2023 ACM Conference on International Computing Education Research -

Volume 1 (Chicago, IL, USA) (ICER ’23). Association for Computing Machinery,
New York, NY, USA, 78–92. https://doi.org/10.1145/3568813.3600142

[99] Andreas Scholl and Natalie Kiesler. 2024. How Novice Programmers Use and
Experience ChatGPT when Solving Programming Exercises in an Introductory
Course. arXiv preprint arXiv:2407.20792 (2024).

[100] Andreas Scholl, Daniel Schiffner, and Natalie Kiesler. 2024. Analyzing Chat
Protocols of Novice Programmers Solving Introductory Programming Tasks
with ChatGPT. arXiv preprint arXiv:2405.19132 (2024).

[101] James Skripchuk, Neil Bennett, Jeffrey Zhang, Eric Li, and Thomas Price. 2023.
Analysis of Novices’ Web-Based Help-Seeking BehaviorWhile Programming. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education

V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for ComputingMachinery,
New York, NY, USA, 945–951. https://doi.org/10.1145/3545945.3569852

[102] Juha Sorva, Ville Karavirta, and LauriMalmi. 2013. A Review of Generic Program
Visualization Systems for Introductory Programming Education. ACM Trans.

Comput. Educ. 13, 4, Article 15 (nov 2013), 64 pages. https://doi.org/10.1145/
2490822

[103] James C. Spohrer and Elliot Soloway. 1986. Novice mistakes: are the folk
wisdoms correct? Commun. ACM 29, 7 (July 1986), 624–632. https://doi.org/10.
1145/6138.6145

[104] R. Suzuki, G. Soares, A. Head, E. Glassman, R. Reis, M. Mongiovi, L. D’Antoni,
and B. Hartmann. 2017. TraceDiff: Debugging unexpected code behavior using
trace divergences. In 2017 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC). 107–115. https://doi.org/10.1109/VLHCC.2017.
8103457

[105] Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile
Rus. 2021. A Comparative Study of Free Self-Explanations and Socratic Tu-
toring Explanations for Source Code Comprehension. In Proceedings of the

52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
219–225. https://doi.org/10.1145/3408877.3432423

[106] Lev Tankelevitch, Viktor Kewenig, Auste Simkute, Ava Elizabeth Scott, Advait
Sarkar, Abigail Sellen, and Sean Rintel. 2024. The Metacognitive Demands
and Opportunities of Generative AI. In Proceedings of the CHI Conference on

Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Association
for Computing Machinery, New York, NY, USA, Article 680, 24 pages. https:
//doi.org/10.1145/3613904.3642902

[107] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: a language indepen-
dent assessment of CS1 knowledge. In Proceedings of the 42nd ACM Tech-

nical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE
’11). Association for Computing Machinery, New York, NY, USA, 111–116.
https://doi.org/10.1145/1953163.1953200

[108] Errol Thompson, Andrew Luxton-Reilly, Jacqueline L. Whalley, Minjie Hu, and
Phil Robbins. 2008. Bloom’s taxonomy for CS assessment. In Proceedings of the

Tenth Conference on Australasian Computing Education - Volume 78 (Wollongong,
NSW, Australia) (ACE ’08). Australian Computer Society, Inc., AUS, 155–161.

[109] Anne Venables, Grace Tan, and Raymond Lister. 2009. A closer look at tracing,
explaining and code writing skills in the novice programmer. In Proceedings of

the Fifth International Workshop on Computing Education Research Workshop

(Berkeley, CA, USA) (ICER ’09). Association for Computing Machinery, New
York, NY, USA, 117–128. https://doi.org/10.1145/1584322.1584336

[110] Camilo Vieira, Alejandra J. Magana, Michael L. Falk, and R. Edwin Garcia.
2017. Writing In-Code Comments to Self-Explain in Computational Science
and Engineering Education. ACM Trans. Comput. Educ. 17, 4, Article 17 (aug
2017), 21 pages. https://doi.org/10.1145/3058751

[111] Lev S. Vygotsky. 1978. Mind in Society: The Development of Higher Psychological

Processes. Harvard University Press, Cambridge, MA.
[112] Wengran Wang, Archit Kwatra, James Skripchuk, Neeloy Gomes, Alexandra

Milliken, Chris Martens, Tiffany Barnes, and Thomas Price. 2021. Novices’
Learning Barriers When Using Code Examples in Open-Ended Programming.
In Proceedings of the 26th ACM Conference on Innovation and Technology in

Computer Science Education V. 1 (Virtual Event, Germany) (ITiCSE ’21). As-
sociation for Computing Machinery, New York, NY, USA, 394–400. https:
//doi.org/10.1145/3430665.3456370

[113] ChristopherWatson, FrederickWB Li, and Jamie L Godwin. 2012. BlueFix: using
crowd-sourced feedback to support programming students in error diagnosis
and repair. In International Conference on Web-Based Learning. Springer, 228–
239.

[114] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural information processing

systems 35 (2022), 24824–24837.
[115] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-

struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 53, 4 pages. https://doi.org/10.1145/3411764.3445228

[116] JulesWhite, SamHays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt.
2024. Chatgpt prompt patterns for improving code quality, refactoring, require-

ments elicitation, and software design. Springer Nature Switzerland, Cham,
71–108. https://doi.org/10.1007/978-3-031-55642-5_4

[117] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (mar
2006), 33–35. https://doi.org/10.1145/1118178.1118215

[118] Xiaotong (Tone) Xu, Jiayu Yin, Catherine Gu, Jenny Mar, Sydney Zhang, Jane L.
E, and Steven P. Dow. 2024. Jamplate: Exploring LLM-Enhanced Templates for
Idea Reflection. In Proceedings of the 29th International Conference on Intelligent

User Interfaces (Greenville, SC, USA) (IUI ’24). Association for Computing Ma-
chinery, New York, NY, USA, 907–921. https://doi.org/10.1145/3640543.3645196

[119] Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. 2024. Ivie: Light-
weight Anchored Explanations of Just-Generated Code. In Proceedings of the

CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI ’24). Association for Computing Machinery, New York, NY, USA, Article
140, 15 pages. https://doi.org/10.1145/3613904.3642239

[120] Ramazan Yilmaz and Fatma Gizem Karaoglan Yilmaz. 2023. Augmented in-
telligence in programming learning: Examining student views on the use of
ChatGPT for programming learning. Computers in Human Behavior: Artificial

Humans 1, 2 (2023), 100005. https://doi.org/10.1016/j.chbah.2023.100005
[121] Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and

Stephen MacNeil. 2023. Generative AI in Computing Education: Perspectives
of Students and Instructors. In 2023 IEEE Frontiers in Education Conference (FIE).
1–9. https://doi.org/10.1109/FIE58773.2023.10343467

[122] Andrew Hicks Zhongxiu Liu, Rui Zhi and Tiffany Barnes. 2017. Understanding
problem solving behavior of 6–8 graders in a debugging game. Computer Science

Education 27, 1 (2017), 1–29. https://doi.org/10.1080/08993408.2017.1308651
[123] Daniel Zingaro, Cynthia Taylor, Leo Porter, Michael Clancy, Cynthia Lee,

Soohyun Nam Liao, and Kevin C. Webb. 2018. Identifying Student Diffi-
culties with Basic Data Structures. In Proceedings of the 2018 ACM Confer-

ence on International Computing Education Research (Espoo, Finland) (ICER
’18). Association for Computing Machinery, New York, NY, USA, 169–177.
https://doi.org/10.1145/3230977.3231005

https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3105726.3106169
https://doi.org/10.1145/3632620.3671116
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3077618
https://doi.org/10.1080/08993400500224310
https://arxiv.org/abs/https://doi.org/10.1080/08993400500224310
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/3649404
https://doi.org/10.1145/3568813.3600142
https://doi.org/10.1145/3545945.3569852
https://doi.org/10.1145/2490822
https://doi.org/10.1145/2490822
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/6138.6145
https://doi.org/10.1109/VLHCC.2017.8103457
https://doi.org/10.1109/VLHCC.2017.8103457
https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.1145/3613904.3642902
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/1584322.1584336
https://doi.org/10.1145/3058751
https://doi.org/10.1145/3430665.3456370
https://doi.org/10.1145/3430665.3456370
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1007/978-3-031-55642-5_4
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/3640543.3645196
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1016/j.chbah.2023.100005
https://doi.org/10.1109/FIE58773.2023.10343467
https://doi.org/10.1080/08993408.2017.1308651
https://doi.org/10.1145/3230977.3231005

	Abstract
	1 Introduction
	2 Related Work
	2.1 Challenges in Learning to Code
	2.2 The Changing Landscape with Generative AI
	2.3 Cognitive Engagement with AI

	3 Cognitive Engagement Techniques with AI-Generated Code
	3.1 T1. Baseline (Minimal | Passive | Reveal & Engage)
	3.2 T2. Guided-Write-Over (Remember | Active | Engage & Reveal)
	3.3 T3. Solve-Code-Puzzle (Analyze | Constructive | Engage & Reveal)
	3.4 T4. Verify-and-Review (Evaluate | Constructive | Engage & Reveal)
	3.5 T5. Interactive-Pseudo-Code (Understand | Constructive | Engage & Reveal)
	3.6 T6. Explain-before-Usage (Understand | Interactive | Reveal & Engage)
	3.7 T7. Lead-and-Reveal (Create | Interactive | Engage & Reveal)
	3.8 T8. Trace-and-Predict (Apply | Constructive | Reveal & Engage)

	4 Study 1: Comparing All Techniques
	4.1 Experiment Tool Design
	4.2 Methodology
	4.3 RQ1 [Performance] How effective are the cognitive engagement techniques?
	4.4 RQ2 [Friction] How do the techniques impact perceived friction?
	4.5 RQ3 [Perceptions] What are participants' perceptions of the techniques?
	4.6 Summary of Results

	5 Final Design Iteration
	5.1 Lead-and-Reveal (V2)
	5.2 Trace-and-Predict (V2)

	6 Study 2: Pre vs. Post Engagement
	6.1 Methodology
	6.2 Study Procedure
	6.3 RQ1 [Performance] How effectivel are the techniques in supporting learning?
	6.4 RQ2 [Friction] What level of friction do the techniques introduce?
	6.5 RQ3 [Metacognitive Self-Assessment] How do the techniques impact the ability to assess one's own performance?
	6.6 RQ4 [Perceptions] How do participants perceive each technique?
	6.7 Summary of Results

	7 Discussion and Future Work
	7.1 Limitations
	7.2 Friction-Induced AI

	8 Conclusion
	Acknowledgments
	References

