
OurCode: Experiences Transitioning University Research into a
Developer Tools Startup

Consuelo López

consuelo@ourcode.io

OurCode Inc.

Buenos Aires, Argentina

Sahar Mehrpour
∗

smehrpou@gmu.edu

George Mason University

Fairfax, Virginia, USA

Austin Z. Henley

azhenley@cmu.edu

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Thomas D. LaToza
∗

tlatoza@gmu.edu

George Mason University

Fairfax, Virginia, USA

Abstract
Commercializing a university research project by creating a com-

pany offers a direct path for software engineering researchers based

in a university to put their research directly into the hands of

practicing software engineers. In this paper, we offer insight and

reflections on tech transfer through the context of our journey

with OurCode, a developer tools startup aimed at rethinking how

developers interact with software documentation. We detail our

experience shifting from a project focused on basic research into a

business mindset focused on meeting customer needs. Our lessons

underscore the importance of balancing technical innovation with

business needs, leveraging mentorship for strategic guidance, and

fostering community-driven approaches to branding and user en-

gagement. We report on the process of customer discovery and

lessons learned about onboarding and software documentation

practices and how engineering leaders make choices around the

adoption of new developers tools. We conclude with reflections on

the challenges and value of tech transfer in software engineering,

including what researchers can learn from failed transitions to align

their innovations with real-world needs and startup dynamics.

CCS Concepts
• Software and its engineering→ Software creation and man-
agement.

Keywords
Tech transfer, developer tools, startup journey, customer discovery,

academic commercialization, developer experience

ACM Reference Format:
Consuelo López, Sahar Mehrpour, Austin Z. Henley, and Thomas D. La-

Toza. 2025. OurCode: Experiences Transitioning University Research into

a Developer Tools Startup. In 33rd ACM International Conference on the
Foundations of Software Engineering (FSE Companion ’25), June 23–28, 2025,

∗
Also affiliated with OurCode Inc.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1276-0/2025/06

https://doi.org/10.1145/3696630.3728554

Trondheim, Norway. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3696630.3728554

1 Introduction
Software engineering aspires to improve the everyday practice of

building software through better tools and practices. The process

of moving basic research ideas into practice through tech transfer

is central to the identity of software engineering as a discipline.

There are many tech transfer pathways, most commonly through

industrial research teams embedded in companies.

Working inside a company, while also participating in the soft-

ware engineering research community, industrial researchers bridge

the gap between research and practice by applying research in a real

world setting. However, for university researchers, this pathway to

tech transfer can be challenging. In particular, industrial research

projects are initiated and managed to support the larger company

context. For a university researcher looking to quickly transition

their research innovations into practice, finding an industrial re-

search team whose own goals closely align with the university

research and who have the interest and bandwidth to pursue the

work can become an insurmountable barrier to even begin.

An alternative pathway for university researchers to pursue tech

transfer and put new tools and practices into the hands of engineers

is to found a developer tools startup. In this pathway, researchers

at a university form a company, build a team, and create a product

or service that can be sold to customers. This pathway offers a

direct and immediate way for university researchers to move basic

research in developer tools into practice.

In this paper, we report on our experiences commercializing

basic research in software engineering by founding and building a

developer tools startup. Our aim is to offer university researchers

a starting point for understanding the challenges they will face in

commercializing research, some of the approaches available, and

our hard-earned lessons from applying these in practice. While our

aim is to shed light on the overall pathway of commercialization

through a startup, we focus most closely on the challenges our

company faced. The approaches we describe may be specific to the

United States, where our company was founded.

Figure 1 describes the overall timeline of our project, encom-

passing both the university research and the activities to create the

startup. Our project began with the creation of a new technique

https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3696630.3728554
https://doi.org/10.1145/3696630.3728554
https://doi.org/10.1145/3696630.3728554

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Lopez et al.

to keep software documentation up to date and more tightly inte-

grated with code, ActiveDocumentation [12]. This project yielded

several subsequent research publications, describing a new tech-

nique to easily create active documentation [13] and an empir-

ical study demonstrating that many of the knowledge transfer

issues developers face can be addressed through active documenta-

tion [11]. Following the completion of user studies which demon-

strated that the approach could dramatically speed developers’

work with unfamiliar code [12, 13], we began to explore commer-

cialization through a startup. We participated in a program to help

university researchers create a startup, the NSF Regional I-Corps,

and then officially founded a new company, OurCode Inc., struc-

tured as a Delaware C Corp. We applied for funding, partnered

with startup advisors, and began developing a website, branding,

and social media strategy to drive awareness of our startup. To

understand if this project could lead to a successful and viable busi-

ness, we participated in the NSF National I-Corps program, where

we conducted interviews with over 100 software engineers, engi-

neering leads, engineering managers, and CTOs and examined if

there was a need for our product. In December 2024, we officially

shutdown our business.

In the remainder of this paper, we share our experiences and

lessons learned commercializing software engineering research,

beginning by briefly reviewing our initial research project. We then

describe the pathway to commercialization we pursued, focusing

on some of the key challenges any developer tool startup will face

including funding, intellectual property, branding and marketing,

and utilizing mentoring resources. We then examine the central fo-

cus of a startup in detail, customer discovery and achieving product

market fit, and our experiences with customer discovery. We reflect

on the most pressing challenges our company faced and conclude

with lessons that go beyond our experience, offering guidance for

researchers pursuing tech transfer and contributing to broader con-

versations about how academia can better align with the practical

needs of the software industry.

2 Related Work: Research Tech Transfer
Since the 1980s, academic institutions have increasingly prioritized

the commercialization of research to diversify their revenue sources

and to grow beyond academic impact [10, 18, 20]. This has led to

the establishment of dedicated technology transfer offices, which

manage the licensing of intellectual property (IP) generated through

research. These offices often facilitate patent applications, nego-

tiate licensing agreements, and build connections with potential

industry partners. Beyond IP licensing, universities have developed

on-campus incubators and accelerators that provide mentorship,

funding, and access to resources needed to develop and scale star-

tups (e.g., George Mason University’s Mason Enterprise Center
1
).

Many institutions also support faculty and researchers in forming

their own companies with leave policies for company formation,

entrepreneurial training, connections to venture capital networks,

and early-stage funding.

In their seminal 1985 paper, Redwine and Riddle examined vari-

ous software technologies to understand their development and dis-

semination [16]. They found that it typically takes 15 to 20 years for

1
https://enterprise.gmu.edu/

Figure 1: Timeline showing ourmilestones as we transitioned
from research to startup.

a technology to mature from initial concept to widespread adoption,

involving six distinct phases: (1) Basic research, where ideas and

concepts are explored and key research questions are established. (2)

Concept formulation, which involves the informal sharing of ideas,

building a research community, and publishing solutions to specific

subproblems. (3) Development and extension, during which the

technology begins to be used, underlying ideas are clarified, and the

approach is broadened. (4) Internal enhancement and exploration,

where the technology is applied to new domains, real-world prob-

lems, stabilized, and supported with training materials to demon-

strate its value. (5) External enhancement and exploration, which

engages a broader community beyond the original developers to

provide substantial evidence of the technology’s effectiveness and

applicability. (6) Popularization, the final stage where high-quality,

supported versions of the technology are produced, commercialized,

marketed, and the user base is expanded for mainstream adoption.

Similarly, the book, Diffusion of Innovations, describes the broader
process of diffusion as having an innovation communicated through

channels, over time, among people in a social system [17]. Both

of these frameworks together offer a comprehensive roadmap for

understanding the lifecycle of software technologies, which may

be particularly apt for transitioning software engineering research

into products.

In the software engineering research community, there have

been numerous examples of academics who have started compa-

nies to commercialize their research. Semmle was a company that

OurCode: Experiences Transitioning University Research into a Developer Tools Startup FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Figure 2: ActiveDocumentation is a plugin (right) for an IDE (left) that checks documented design decisions (panels) against
code. As code changes, it continuously checks the documentation against the code at compile time, highlighting relevant
sections of the documentation and violations of design decisions in the documentation immediately as they occur.

built a code analysis platform that originated at University of Ox-

ford and acquired by GitHub in 2019 [7]. Monoidics, a spin-off from

research at Imperial College London, developed a formal verifi-

cation tool, Infer [2], and was acquired by Facebook in 2013 [9].

GrammaTech, from Cornell University, has been developing pro-

gram analysis tools since 1988. Coverity, a spin-off from research at

Stanford University, developed a static analysis tool for C and C++

programs and was acquired by Synopsys in 2014 [21]. Majicke built

the bug finding tool, Sapienz, at University College London and was

acquired by Facebook shortly after [19]. Akita developed a tool for

monitoring API traffic and was acquired by Postman in 2023 [15].

Tasktop, started by University of British Columbia researchers, de-

veloped an integration platform for software development tools

and was acquired by Planview in 2022 [14].

One of the most detailed experience reports of commercializing

academic research is by Chilana, Ko, and Wobbrock [3]. Begin-

ning as a research project at the University of Washington, Lemon-

Aid [4] was embedded in websites to help users find answers to

their questions. After several evaluations of the system, including

field deployments of LemonAid running publicly [5], they believed

there was little incentive to continue the evaluations, and instead

decided to commercialize LemonAid. They raised $50,000 from

their university’s commercialization gap fund, which they used to

get customers, develop the product, and find investors. Then they

raised a round of venture capital to build a team and get the product

to market. Their experience report elaborates on the challenges of

what needs to be added to their research prototype to be a scalable

product, who their target customer is, and the value proposition to

their customers [3]. We share our experience, process, and lessons

learned in the remainder of this paper.

3 Basic Research
Our research project began with several empirical studies exam-

ining the difficulties software engineers encounter when working

with unfamiliar code. In 2005, while studying engineers atMicrosoft,

we conducted a series of interviews and surveys that revealed that

existing documentation practices were inadequate, with develop-

ers often distrusting and ignoring the design documents they pro-

duced [8]. Instead, developers relied heavily on implicit knowledge

to understand and edit code, which created challenges onboarding

and sharing knowledge across teams. This suggested a significant

opportunity: tools which more effectively linked code to design

documents could bridge this gap and improve developer workflows.

Building on these insights, we created new forms of static anal-

ysis tools that effectively integrate documentation and code. We

created ActiveDocumentation, which verifies documented design

decisions against code. Each time a developer edits a file in their

IDE, it actively checks the updated code against the documentation,

immediately surfacing relevant design decisions in the documenta-

tion, linking to examples of code following the design decision, and

highlighting design decision violations [12] (Figure 2). A user study

with 18 participants showed that, compared to traditional documen-

tation, ActiveDocumentation significantly improved developers’

ability to work with unfamiliar code faster and more successfully.

To examine the type of static analysis that might be required

to check design documents against code, we conducted an empir-

ical study of 1,323 defects found during code reviews. This study

demonstrated that static analysis tools could, in principle, detect up

to 76% of the defects found in code review [11]. Many of these de-

fects reflected project-specific rules of the sort which are commonly

described in design documents. Among static analysis tools, AST

Pattern Checkers showed the broadest coverage, with the potential

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Lopez et al.

Figure 3: A developer using RulePad creates design decisions
by specifying properties and refining rules in the Graphical
Editor (top) with structured code snippets. They can verify
and optionally edit rules in the Textual Editor (bottom) while
viewing examples of code that satisfy or violate the rule.

to detect 25% of all code review defects. This study underscored

that documentation tools not only support documenting and under-

standing design decisions but also play a critical role in reducing

defects, making them a key resource for enhancing software quality.

We developed RulePad to help developers create design doc-

uments in a checkable format compatible with ActiveDocumen-

tation [13] (Figure 3). Leveraging a novel structured editor and

semi-natural language, RulePad supports documenting design de-

cisions as AST patterns. In a user study with 14 participants, we

compared RulePad to the PMD Designer, a utility for writing rules

in a popular rule checker. Participants using RulePad successfully

authored 13 times more query elements in significantly less time

and reported greater willingness to adopt RulePad in their everyday

work to capture their design decisions.

Finally, we created DesignRuleMiner to, with step by step sup-

port from the developer, identify and extract design rules directly

from the code. By leveraging information from the codebase and

the developer’s work context, DesignRuleMiner suggests relevant

and actionable design rules. In a user study with 16 participants

working in an unfamiliar codebase, we found that it enabled de-

velopers to work 1.42 times faster and produce code that was 1.36

times more accurate. Participants emphasized that the inclusion of

example code snippets illustrating each design rule was crucial for

understanding and implementing the rules effectively.

4 Building a Company
Transitioning a university research project into a successful com-

pany requires addressing a number of key challenges. These include

identifying funding and ownership of intellectual property, building

awareness in the company through a branding and marketing strat-

egy, finding and working with mentors to provide guidance and

direction, and building an engineering team to build the product.

4.1 Funding and Intellectual Property
One of the first key questions is who will fund the new company.

Building a company requires substantial time—to interact with po-

tential customers and understand the market needs, build a minimal

viable product (MVP), find and gather feedback from potential cus-

tomers, and iterate the design of the MVP. We considered three

possible funding mechanisms. Our state government as well as the

US government offer non-dilutive grant funding, which provide

funds for the startup without taking any equity (ownership) in the

resulting startup. Venture capital firms and angel investors focused

on developer tools, such as BoldStart
2
and Devtool Angels

3
, of-

fer dilutive investments, which provide funds in return for equity

(ownership) of the startup. Bootstrapping involves the founders

themselves funding the startup, either by working a second job or

through their own personal savings.

A closely related issue is intellectual property. For potential

investors, a key question is who owns the intellectual property (IP)

being commercialized. For a potential developer tools company, the

key IP is often the core idea, the research innovation that enables the

product, as well as an early stage prototype. In our case, as we had

previously published all of the key innovations, they were no longer

eligible to be patented and were all in the public domain. The code

for our prototype was distributed under a permissive open source

license. While we discussed our plans for commercializing our

research with our university’s office of tech transfer, they ultimately

agreed that the university did not own either of these and that our

startup was largely free to commercialize this work without sharing

ownership with the university.

We applied for a state program (VIPC CCF) which offered non-

dilutive funding and promised a short and simple application pro-

cess. After discussing the program’s aims with a funding officer,

it seemed our project was an ideal fit. However, changes to the

program leadership resulted in changed expectations. We received

feedback that our commercialization effort was not yet mature

enough, as it lacked a sufficiently clear go to market strategy for

reaching potential customers. We did receive a small amount of

non-dilutive funding through a second program which was more

focused on supporting early commercialization efforts, the NSF

National I-Corps.

2
https://boldstart.vc/

3
https://www.devtoolangels.com/

OurCode: Experiences Transitioning University Research into a Developer Tools Startup FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

We considered at length applying for dilutive funding. However,

this came with substantial and meaningful strings. With their pre-

ferred equity, taking funds from a VC would mean relinquishing

substantial leadership autonomy, with the VC able to dictate the

direction and pace of our commercialization. As our goals were to

build an independent developer tool company, rather than facilitate

a future sale of our company, we decided against this.

4.2 Branding and Marketing
Branding and marketing are central to communicate a company’s

vision, connect with potential customers, and establish credibility

in a competitive market. In software engineering, branding goes

beyond a logo or tagline—it is about crafting a consistent narrative

that aligns with the company’s values, mission, and the problems

it seeks to solve. Marketing, in turn, translates this narrative into

actions that build awareness, foster trust, and engage stakeholders.

As a developer tools startup, we recognized that we needed

to create a brand that resonated with developers and decision-

makers alike. The tension lay in balancing technical credibility with

accessibility. Our audience ranged from deeply technical engineers

to engineering managers and decision-makers, each with unique

concerns. Branding and marketing became tools to bridge this gap,

crafting a unified identity that spoke to diverse stakeholders while

maintaining authenticity.

Our branding journey began with identifying our core values,

collaboration, transparency, and simplicity, and ensuring that they

informed every decision. However, with limited resources and no

in-house design expertise, we faced the challenge of translating

these abstract values into a visual identity. Without in-house design

expertise, we used Fiverr to develop the logo. This pushed us to

clarify our brand values and resulted in a design that conveyed

simplicity and connection. Relying on Fiverr meant we had less

direct control over the creative process, and aligning external design

input with our vision required constant communication. Yet, it also

pushed us to articulate our brand values more clearly, ultimately

strengthening the final outcome.

An integral aspect of OurCode’s branding strategy was the de-

sign and implementation of a website that clearly communicated

our mission and engaged our target audience. The website served

as a central hub for information, reflecting our core values of col-

laboration, transparency, and simplicity. Beyond showcasing our

project’s purpose, it was designed to foster interaction, build a sense

of community, and encourage ongoing engagement.

Equally important was the decision on the website’s Call-to-

Action (CTA). Guided by discussions with mentors and internal

brainstorming, we considered various options: “Join a Demo” to

showcase the product in action; “Give Feedback” to gather user

insights and refine our offering; “Follow Us on LinkedIn” to grow

our social media presence and network; “Sign Up for Updates” to

build a mailing list for ongoing communication. Ultimately, we

chose “Sign Up for Updates” as the primary CTA. This reflected our

commitment to transparency and community-building, providing

visitors with a simple way to stay informed about our progress and

future developments.

Marketing OurCode was shaped by experimentation and learn-

ing. We chose LinkedIn as our primary channel, recognizing its

Figure 4: The OurCode.io website, providing a concise state-
ment of the value proposition, a call to action (“Sign up for
updates”), and screencasts demonstrating the tool.

strength in reaching technical decision-makers and engineering

leaders. We created content that served several different aims.

4.2.1 Educational Content. Posts addressing developer pain points,

such as onboarding challenges and documentation practices, sparked

meaningful discussions and positioned us as thought leaders. The

primary goal of our posts was twofold: to engage and build a com-

munity while providing actionable reminders and simple tools to

promote industry best practices. By fostering discussions and of-

fering practical insights, we reinforced value to the audience and

also aligned with our broader mission of empowering developers

to work more effectively and collaboratively. To make the content

more engaging, we introduced humor and referenced academic pa-

pers foundational to our work, ensuring credibility and relevance.

We leveraged tools such as ChatGPT to draft initial posts, enabling

us to iterate quickly and maintain a consistent posting cadence.

A structured approach allowed us to balance accessibility with

technical depth, making complex topics more relatable.

4.2.2 Transparency andUpdates. Sharingmilestones, such as progress

in the National I-Corps program, helped build trust and keep our

audience engaged. This transparency aligned with our value of

openness and also worked to build both our company brand and

personal brand, as suggested by our mentors. Highlighting these

milestones reinforced our credibility, demonstrating progress and

commitment to solving real developer challenges. However, we oc-

casionally struggled with how much detail to include—too little felt

vague, while too much risked overwhelming the audience. Striking

the right balance became a key focus.

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Lopez et al.

Figure 5: Example of a LinkedIn educational post.

4.2.3 Interactive Engagement. Instead of directly asking for inter-

views or feedback, we used open-ended questions like “Who should

I talk to?” or “What’s your team’s biggest challenge with documen-

tation?” This approach worked because it leveraged the power of

personal referrals and fostered organic growth. However, it required

patience, as building trust and getting responses took time.

Our branding and marketing efforts increased visibility, strength-

ened relationships with our target audience, and provided valuable

feedback that informed both our messaging and product develop-

ment. The process also clarified our values and vision, helping us

communicate our project and goals more effectively while estab-

lishing guiding principles for the entire process. Throughout, we

could quantify simple success metrics around engagement, in terms

of views or likes or the number of interview participants found

through these channels, but could not easily quantify the impact

on our thinking about the problem.

4.3 Mentorship Resources
Mentorship provided critical guidance and encouragement, bridged

gaps in knowledge, challenged assumptions, and fostered growth

through shared expertise. For OurCode, mentorship came through

a combination of structured programs, informal conversations, and

networking, each contributing uniquely to our development.

Building a startup is as much about learning as it is about execu-

tion. While our team had strong academic and technical expertise,

we lacked experience in business development. We sought men-

torship because we recognized the importance of having someone

who could not only guide us but also point out blind spots we might

otherwise miss. Mentorship provided us with external perspectives,

expanded our network, and gave us access to individuals who had

navigated similar paths. By learning from their experiences, we

avoided common pitfalls, identified new opportunities, and grew

more confident in our decisions. Our participation in formal men-

torship initiatives such as VMT, National I-Corps, and Endeavor

provided targeted support that went beyond expectations.

4.3.1 The Venture Mentoring Team Organization (VMT). We ini-

tially joined VMT looking for a single mentor to support us as we

prepared to begin the NSF National I-Corps program. We found

an entire group of mentors who became a consistent source of

guidance and encouragement. Our first interaction with the group

was a pivotal moment: we presented a pitch to convince them why

they should invest their voluntary time to help us. This milestone

not only shaped our mindset as entrepreneurs (forcing us to ar-

ticulate our vision and goals clearly) but also laid the foundation

for a deep, trust-based relationship. Over the course of a year, we

had monthly calls to review updates, address obstacles, and explore

new opportunities. Beyond their practical advice and connections

to valuable resources, this group provided emotional support, con-

sistently demonstrating trust in us and our potential. Their belief

in our work helped sustain our motivation through challenges. The

program culminated in a meaningful closure call, reflecting on our

progress and fostering a lasting relationship that continues.

4.3.2 National I-Corps Program. While the structured classes in

the I-Corps program were invaluable, the biggest benefit was the

opportunity to schedule 1:1 calls with experts. These were not aca-

demic mentors but engineering leaders or entrepreneurs who had

built their own businesses and could offer firsthand insights. Their

advice extended beyond customer discovery, helping us understand

the practical realities of scaling a startup and making strategic de-

cisions under uncertainty. Additionally, at the beginning of each

group encounter, we had dedicated time to present our progress

and receive targeted feedback. This iterative process helped us re-

fine our approach, incorporating inputs from mentors and peers to

improve continuously. The combination of structured guidance, per-

sonalized mentorship, and actionable feedback made the program

a transformative experience for our team.

4.3.3 Endeavor. Consuelo participated in theWomen in Entrepreneur-

ship program by Endeavor, which offered a tailored approach to

mentorship. Through weekly classes, 1:1 mentorship sessions with

local entrepreneurs, and a network of female founders, the program

provided inspiration and practical tools for navigating the complex-

ities of running a startup. The exposure to diverse perspectives and

experiences among female founders was particularly empowering,

reinforcing the importance of resilience and innovation.

Beyond formal programs, informal mentorship and network-

ing played a pivotal role in our journey. Conversations with col-

leagues, peers, and industry connections often provided unexpected

insights. For example, discussions at industry meetups or introduc-

tions through LinkedIn expanded our perspective and reinforced

the value of community-driven learning. The mentorship we re-

ceived shaped every aspect of OurCode, from product development

to marketing and branding strategies. It enabled us to validate ideas

and assumptions, gain clarity on critical decisions through external

perspectives, and build confidence and resilience by learning from

the successes and failures of others.

OurCode: Experiences Transitioning University Research into a Developer Tools Startup FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

4.4 Building a Team
Building the OurCode team was as much about fostering collab-

oration as it was about finding the right people. Our team grew

through the addition of six interns, all of whom were recent gradu-

ates from the same institution as two of our core team members.

They were eager to gain real-world experience while navigating the

transition to full-time engineering roles. This dynamic introduced

both opportunities and challenges, as we worked to align individ-

ual aspirations with the collective mission of OurCode. From the

outset, we emphasized that the team was not just a collection of

individuals working toward a product but a community united by

shared values. The onboarding process reflected this philosophy.

Our first All Hands meeting focused on introducing the team to

OurCode’s vision and values. This meeting was more than just a

procedural formality; it was an opportunity to connect on a human

level, build trust, and foster a sense of belonging. To foster connec-

tion and reflection, we experimented with onboarding activities

like journaling and personal sharing sessions. While reactions were

mixed, they helped spark interpersonal connections and discussions

around team roles and contributions.

However, the process of integrating interns was far from seam-

less. Many were accustomed to a classroom dynamic, with clear

tasks and assessments. Shifting this mindset to a process-oriented,

collaborative approach required significant patience and reinforce-

ment. Encouragement to view tasks as part of a larger team effort,

rather than isolated assignments, was a persistent struggle. We fre-

quently emphasized the importance of communication and iterative

learning, but translating this into action proved challenging.

While we had previously evaluated our tool through lab studies

with dozens of users, no users had yet regularly used the tool as

part of their work. When an intern tried, they identified barriers to

using the tool, including documentation that offered an incomplete

picture of how to start using the tool, usability issues, and perfor-

mance issues using some of the tools’ features. While we hoped

to learn about how it would fit into their workflow and refine our

notion of where it would help most, we instead only learned that

more engineering work was first needed. Another aim for our in-

terns was to serve as a showcase for good documentation practices.

However, this goal was only partially met. While some progress

was made, they struggled to understand what was important to

document and to attain the expertise necessary to document it.

While engineering tasks were assigned, interns often gravitated

toward the easiest ones, avoiding larger, more complex commit-

ments. This lack of ownership and accountability limited the team’s

overall progress. To address these challenges, we experimented with

various strategies, such as pair programming, brainstorming ses-

sions, and task-oriented challenges. However, even these initiatives

had mixed success, as motivation and engagement levels varied

widely. Some activities, like journaling and documentation partici-

pation, offered insights into team dynamics and preferences, but

they fell short of driving substantial progress on core objectives.

5 Customer Discovery
Transitioning from company-building to customer discovery, our

mindset shifted dramatically. Initially, our efforts were inward-

focused: branding, building a team, and translating our research

into a product. But once we began interviews, we realized that our

differentiators often did not resonate with customers. This marked

a critical turning point—from projecting value to actively listening

and reshaping our offering based on real-world needs.

Most startups fail not due to the challenges engineering a product

but because there are not enough customers who choose to buy

their product. The concept of product-market fit, creating a product

that satisfies a pressing need of its customers, is central to the

journey of a startup. It is often the case that what startups think

customers need differs fromwhat customers actually need. Building

a successful startup can be seen as a search for a business that can

successfully, repeatedly, and scalably sell to customers [1]. In our

project, we used techniques from the Lean Launchpad to talk to

potential customers, learn about their key practices and pain points,

and carefully examine how our product might or might not be the

best way for customers to meet these needs.

5.1 Identifying a Value Proposition
Identifying our customer and value proposition was a pivotal aspect

of OurCode’s journey. Early on, our assumptions about potential

customers and their pain points were broad and, as we learned,

incomplete. Initially, we conflated users with customers, focusing

on the value our tool offered to developers, the end users, while

overlooking the priorities of decision-makers who controlled pur-

chasing. This misalignment became evident during our interactions

with mentors in the Venture Mentoring Team (VMT). They chal-

lenged us to think beyond functionality and consider the business

value for customers, such as return on investment (ROI) and align-

ment with organizational goals.

One suggestion was to target organizations migrating legacy

COBOL projects, as these teams faced acute documentation and

maintenance challenges. While this niche presented clear opportu-

nities, it was far removed from our network and expertise, making

it difficult to access and validate. This underscored balancing op-

portunity with practicality when defining a target market.

Through iterative feedback, we began differentiating between

adding value to the customer, such as reducing operational costs or

improving compliance, and enhancing the experience for users by

addressing pain points like inefficient onboarding or poor documen-

tation practices. This dual focus enabled us to refine our messaging

and prioritize features that bridged both perspectives.

One software architect at a mid-sized company explained that

while they regularly adopted developer tools, it was challenging to

quantify productivity gains clearly enough to justify new purchases.

Developer tools were easiest to approve when they (1) supported

compliance (e.g., for security or auditing), (2) reduced costs in large

work-in-progress projects (e.g., migrations), or (3) reduced cloud

expenses. After several painful migrations between paid documen-

tation tools, his team decided to avoid additional vendor lock-in

and prioritized open-source alternatives with no licensing costs.

5.2 Customer Discovery Process
Finding and engaging customers and users is one of the most chal-

lenging aspects of building a product or business. This requires not

only identifying customers who might benefit from the product, but

also customers who are representative of a broader market segment,

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Lopez et al.

have decision-making power, and experience the problem being

solved. For us, this meant connecting with engineering managers,

team leads, and software engineers.

Initially, we believed our solution would appeal to engineering

managers across companies of all sizes. However, we found that

small to medium-sized companies—particularly those with chal-

lenges in knowledge transfer for long-term maintenance—were

a better fit. This realization came after dozens of conversations

that exposed the nuanced needs and barriers of different organiza-

tional contexts. We started by reaching out to our network—former

colleagues, friends, and family in the software industry—before tar-

geting specific individuals and roles. Beyond potential customers

and decision-makers, we also spoke with influencers and potential

partners who could improve our understanding of the market.

To connect with these stakeholders, we used a mix of strategies.

Attending trade shows, conferences, and meetups such as the Git-

Lab DevSecOps World Tour, Chicas en Tecnología Festival, and

local Code & Coffee events allowed us to meet potential users in

informal yet impactful settings. On LinkedIn, personalized mes-

sages and posts asking “Who should I connect with?” proved more

effective than directly asking for interviews. Referrals from inter-

viewees expanded our network exponentially, adding credibility

and opening doors to more meaningful conversations.

Engaging stakeholders effectively meant approaching each inter-

action as an opportunity to learn. We adapted our communication

to suit the audience, diving into specific workflows with technical

users and focusing on cost-saving benefits with managers. Inviting

participants to reflect on their top challenges fostered thoughtful

discussions and helped establish goodwill, laying the foundation

for long-term relationships.

Through over 100 interviews, we honed our questioning tech-

niques. Starting with broad, open-ended questions like “What are

the biggest challenges in your workflow?” encouraged free sharing,

while follow-up queries such as “How do you document design

decisions, and what’s most frustrating about it?” uncovered deeper

insights. Avoiding leading questions ensured authentic responses,

and hypothesis testing validated or refined our assumptions. As

patterns emerged, we focused our scripts on key areas like adoption

processes, budget constraints, and decision-making dynamics.

Undertaking this process required empathy, adaptability, and

structure. Through extensive networking, deliberate interactions,

and iterative questioning, we identified our target audience and

gained a deeper understanding of their challenges. These experi-

ences shaped our market perspective and provided a foundation

of lessons that will guide future endeavors, offering a blueprint for

bridging the gap between user needs and business opportunities.

5.3 Onboarding and Software Documentation
Through extensive customer interviews, we gained valuable in-

sights into the challenges organizations face with onboarding and

software documentation practices. These learnings provided a deeper

understanding of pain points, the variability of approaches across

companies, and opportunities to improve developer workflows.

A recurring theme in our interviews was the difficulty organi-

zations encounter when onboarding new developers. Many engi-

neering managers highlighted how onboarding is often a slow and

resource-intensive process, particularly for teams working with

legacy codebases or complex projects. Key challenges included:

Knowledge Transfer: Developers frequently need to explore un-

familiar parts of the codebase to become productive. This process

is hindered by insufficient documentation, resulting in reliance on

oral knowledge transfer or informal mentoring, which disrupts

senior developers’ workflows.

Fragmented Processes: Onboarding often lacks a cohesive struc-

ture, with new hires piecing together information from disparate

sources, including outdated documentation, code comments, and

direct guidance from teammates.

Time to Productivity: Organizations expressed concerns about

how long it takes for new hires to make meaningful contributions.

Poor documentation and inefficient onboarding processes were

cited as major factors slowing this timeline. Software documenta-

tion emerged as both a critical enabler and a persistent pain point

for teams. While most organizations recognize the value of docu-

mentation, several patterns of challenges were consistently noted:

Perceived Low Priority: Documentation is often deprioritized

compared to feature development, leading to outdated or incom-

plete materials. This creates a cycle where developers distrust doc-

umentation and rely instead on their memory or colleagues.

Switching Costs: Teams that adopt or transition between docu-

mentation tools often face significant disruption. One interviewee

described multiple painful migrations between paid documenta-

tion tools, leading to a preference for Open Source solutions that

minimize costs and offer flexibility.

Disconnected Documentation: A major pain point was the lack

of integration between documentation and code. Static documents

that fail to update with code changes result in mismatches that

further erode the trust in documentation.

Adopting new tools or practices to address onboarding and doc-

umentation challenges faces several obstacles. Often teams struggle

to quantify the return on investment of documentation improve-

ments, often seeing it as an additional cost rather than a long-term

enabler of productivity. At the same time, developers may resist

adopting documentation tools if they perceive the workflow as

cumbersome or misaligned with their existing practices.

These customer interviews underscored the critical importance

of addressing onboarding and documentation practices as part of

improving developer workflows. By focusing on tools and pro-

cesses that reduce friction, support knowledge transfer, and inte-

grate seamlessly into existing systems, organizations can enhance

developer productivity and streamline onboarding.

5.4 Adoption of Developer Tools
The adoption of developer tools in organizations is shaped by how

tools are sourced, the processes driving their adoption, and the chal-

lenges associated with demonstrating their value. Understanding

this is critical for positioning new tools in a competitive market.

Organizations typically acquire developer tools in one of three

ways. In-house development is common in larger companies that

build custom tools tailored to their specific needs. These tools are of-

ten based on existingOpen Source solutions, combining community-

driven innovation with company-specific adaptations. While this

provides flexibility and integration, it demands significant internal

OurCode: Experiences Transitioning University Research into a Developer Tools Startup FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

resources for development and ongoing maintenance. Purchases

from established vendors are also common, with many organiza-

tions selecting tools from well-known companies due to their per-

ceived reliability, robust support, and long-term stability. Startups

face challenges, as they are perceived as riskier due to their limited

resources, lack of reputation, and uncertain longevity. This hesita-

tion is particularly pronounced in industries with strict compliance

requirements or during economic downturns when risk tolerance is

low. Finally, mixed purchases from multiple vendors are prevalent

among smaller and medium-sized companies. This allows organiza-

tions to select tools addressing specific needs without committing

to a single vendor, with OSS solutions often crucial. OSS tools offer

affordability and flexibility but can lead to integration challenges

and tool redundancy, where overlapping functionality creates inef-

ficiencies. Balancing the benefits of OSS innovation with the need

for a cohesive toolset remains a common challenge.

Adoption processes for developer tools typically follow one of

two models: bottom-up adoption or top-down adoption. Bottom-up

adoption is driven by developers or team leads who independently

discover tools, often through social media, open-source communi-

ties, or personal projects. These individuals experiment with tools,

share their experiences, and advocate for adoption within teams.

In contrast, top-down adoption is initiated by management as part

of strategic priorities, such as reducing the risk of security vulner-

abilities or increasing release cadence. While top-down adoption

ensures alignment with organizational goals, it can face resistance

if the tool does not meet developers’ practical needs or integrate ef-

fectively with existing workflows. Both models have strengths and

weaknesses, and successful adoption often requires bridging the

gap between individual enthusiasm and organizational priorities.

One of the biggest challenges in adopting developer tools is

making a compelling business case. Organizations often struggle

to quantify the productivity impact of new tools, as it is difficult to

measure how they influence efficiency or developer output. Usage

uncertainty—how many developers will actively use the tool and

how often its benefits apply—further complicates justifying the

investment. Consequently, developer tools are frequently perceived

as an added expense rather than a cost-saving measure, especially

in cost-conscious environments.

Our interview process identified specific scenarios where the

business case for developer tools is strongest. Tools that support

compliance requirements, such as security or auditing, are prior-

itized because their results are essential for organizations to sell

their products. Similarly, tools that significantly reduce the costs of

work in progress, such as migration projects, are easier to justify

due to their direct financial impact. Another area where tools gain

traction is in their ability to reduce cloud spend, a growing priority

as companies look to optimize operational costs. However, organiza-

tions remain cautious of tools that require disruptive transitions or

fail to deliver clear results. For instance, one interviewee noted that

their team had switched paid documentation tools multiple times,

each migration causing significant disruption. This experience led

them to prefer OSS solutions, which are perceived as cost-effective

and flexible alternatives.

To succeed in this landscape, new developer tools must directly

address these challenges. Communicating a clear value proposi-

tion—such as reducing knowledge transfer time, enabling faster

onboarding, or solving specific pain points—can help shift percep-

tions from cost to value. Tools that align with existing workflows

and integrate seamlessly into current systems can reduce resistance

and foster adoption. Demonstrating tangible outcomes through

pilot projects or case studies builds trust and makes the business

case more compelling, ensuring a smoother path to adoption.

6 Challenges Starting a Company
Our challenges were not just technical, they were existential. One

of the most pivotal moments came when we sat down to review

the data from our 100+ interviews and saw a simple, painful pat-

tern: only two people said they would pay to try our product. We

were bootstrapping, working multiple jobs, and navigating finan-

cial constraints. The effort required to keep building, both in time

and money, no longer made sense. This turning point reframed

everything. From that moment on, our decisions were shaped not

just by optimism, but by realism.

As we began to discover through our conversations with po-

tential customers, we began our company in challenging times for

developer tools. Due to the economic conditions, many companies

were focused on cutting costs. We discovered that, while no one

felt that onboarding worked well or that software documentation

was up to date and trustworthy, neither of these were top priorities

for most decision makers. Developer tools were often perceived as

a new cost, and the focus was more on how to reduce these costs

by removing developer tools that were unnecessary, infrequently

used, or which overlapped in functionality with other tools.

An additional challenge was the positioning of our technology

itself. As we finished the basic research that enabled our tooling and

began the work of starting the company, many developer workflows

were quickly changing with the rapid adoption of generative AI.

Whereas creating software documentation had always previously

been perceived as a manual and labor-intensive process, generative

AI based tools offered the promise of replacing this with automation,

where a tool could create documentation (e.g., Swim
4
). Other tools

promised to remove the need for creating software documentation

entirely. Instead of referencing a design document, a developer

might instead interact with a generative AI chat tool, which draws

on knowledge stored in chat logs, issue trackers, or wikis.

Generative AI tools did not entirely remove the need for our tech-

nology. As developers generate more code through AI, we expected

that there would be increased need for tooling to help establish

trust in this code. Moreover, while generative AI tools can ingest

text from knowledge stores, this information may itself, like soft-

ware documentation, be out of date and incomplete. Our technology

could offer a compelling solution to this problem, making it easy for

a developer to establish a clear design and architecture for a code-

base, captured in checkable rules, and ensure that all AI-generated

code follows this design and architecture whenever it is generated.

But building this tooling would require a pivot—a rethinking of our

key value proposition and the features which support this— which

would require substantial engineering time to realize.

Our startup also faced more practical challenges. As we found

from having our interns attempt to dogfood our product, our tool

needed more work to address defects, improve its documentation,

4
https://swimm.io/

FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Lopez et al.

and address performance issues. In addition, we had designed the

tool to support Java. But few of the prospective customers we found

wanted to use it for Java. One potential market for our tool was to

assist in working with really old codebases, such as those written in

Cobol. Or, we could alternatively support more popular languages

for new projects, such as JavaScript or Python. However, our tool

was built on top of an AST query engine [6] which did not support

any of these languages. Migrating to a modern query engine would

address this, but would require months of work. In the meantime,

our tool lacked feedback from users to guide its direction.

A final challenge was the nature of our funding. We had funding

for a short 7-week customer discovery effort through the National

I-Corps, but this did not include follow-on funding to domeaningful

engineering work to refocus our product based on what we had

learned from interacting with potential customers. Our primary

funding source was bootstrapping. One of us worked part time

on this project while spending most of their time seeking outside

consulting jobs. Another was employed in a faculty role, which

left only part time commitments available for this project. And our

third member had no employment at all. All of this meant that there

was strong pressure to obtain income fast, with little time available

for addressing the many challenges we faced.

As a result of these challenges, our company ultimately shut-

down in December 2024, just over 13 months after incorporation.

This decision resulted in the “Intellectual Honesty Award”, honored

by NSF during the I-Corps program, recognizing our commitment

to relying on observed data and addressing real user needs rather

than building for the sake of building. Rather than build a company,

we planned to instead continue to offer our technology as an open

source project. However, building a successful open source devel-

oper tool requires much the same work as building a commercial

company: marketing work to build awareness, engagement with

users to understand market needs, and engineering work to build a

product. While a community might assist with some of these tasks,

providing leadership and guidance can be just as time consuming

as running a company, and difficult to balance with the many other

commitments of researchers.

7 Lessons from a Failed Startup: Insights on
Tech Transfer for Researchers

Transitioning academic research into a startup is often portrayed as

a success story when it ends in acquisition or scale. But even when

a startup does not reach that outcome, it can serve as a powerful

learning tool, both for the researchers involved and the broader

academic community. Our experience surfaces insights often absent

in success narratives: what misalignments matter, how researchers

can improve their approach, and what systemic barriers remain.

One of the hardest lessons we learned was that solving a substan-

tial problem for many users does not automatically translate into a

successful business. This realization emerged as we grappled with

the fundamental gap between the value experienced by end-users

and the priorities of decision-makers. Developers, who interact

directly with tools, are not always the ones making purchasing

decisions. Decision-makers prioritize business value, like return on

investment, risk mitigation, or cost savings, while developers focus

on usability and seamless integration into their workflows.

The gap between research and industry in the developer tools

space is vast and shaped by diverging incentives. Research prior-

itizes long-term goals, novelty, and incremental contributions to

knowledge, while industry emphasizes immediate solutions and

rapidly evolving trends. Academic prototypes, often referred to as

"researchware", are designed to demonstrate technical capabilities

and rigor but may fail to address the broader, practical workflows

that industry values. For example, while our prototype rigorously

captured documentation design rules, we questioned whether this

approach fully aligned with the real pain points of software teams.

This tension underscored the need for iterative feedback and real-

world validation, both of which are essential for bridging this divide.

Engaging users early was critical to uncovering practical in-

sights. While academic rigor often prioritizes large sample sizes

or controlled experiments, even brief, informal conversations re-

vealed obvious yet transformative lessons about user workflows

and priorities. These non-rigorous interactions, though underval-

ued in academic circles, were foundational to refining our approach.

Rigor, we learned, is not solely about increasing sample sizes but

about adopting a broader perspective that includes iterative learn-

ing through real-world feedback.

Recruiting participants for these conversations required a shift

from traditional academic approaches. Developers are often treated

as a homogeneous group based on years of experience or roles, but

their needs vary widely depending on organizational context, team

dynamics, and personal work styles. Networking became our pri-

mary recruitment strategy, relying on personal contacts, referrals,

and trust. This hands-on approach helped us find participants who

could provide meaningful, contextual feedback while also main-

taining valuable social capital within our network.

Finally, the industry’s focus on trends and immediate applica-

bility presented additional challenges. Companies prefer tools that

have been vetted by peers and align with established trends. As

a startup with an unproven tool, building credibility in a compet-

itive market was difficult. Generative AI, for instance, reshaped

developer workflows during our journey, presenting both new chal-

lenges and opportunities. These disruptions further emphasized

the importance of adaptability in aligning with market needs.

Transitioning from research to industry requires balancing rigor

with practicality, fostering early and iterative user engagement, and

understanding the dynamics between users and decision-makers.

While our journey was marked by challenges, it offered invalu-

able lessons that future teams can use to avoid similar pitfalls. Our

experience shows that a startup, even when it does not succeed

commercially, can still generate critical insights for aligning aca-

demic innovation with industry needs. In this way, our "failure"

becomes a valuable outcome: one that can inform more grounded,

impact-oriented research practices and better prepare future aca-

demic entrepreneurs for the realities of commercialization.

8 Acknowledgments
This work was supported in part by the US National Science Founda-

tion and Innovation Corps (I-Corps) program under grants 1703734,

1845508, and 2433803. We thank our mentors, interview partici-

pants, and the broader software engineering community for their

invaluable insights and support throughout this journey.

OurCode: Experiences Transitioning University Research into a Developer Tools Startup FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

References
[1] Blank, S., and Dorf, B. The Startup Owner’s Manual: The Step-by-Step Guide for

Building a Great Company. K & S Ranch, 2012.

[2] Calcagno, C., and Distefano, D. Infer: An automatic program verifier for

memory safety of c programs. In NASA Formal Methods (Berlin, Heidelberg,
2011), M. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds., Springer Berlin

Heidelberg, pp. 459–465.

[3] Chilana, P. K., Ko, A. J., and Wobbrock, J. From user-centered to adoption-

centered design: A case study of an hci research innovation becoming a product.

In Proceedings of the 33rd Annual ACM Conference on Human Factors in Com-
puting Systems (New York, NY, USA, 2015), CHI ’15, Association for Computing

Machinery, p. 1749–1758.

[4] Chilana, P. K., Ko, A. J., and Wobbrock, J. O. Lemonaid: selection-based

crowdsourced contextual help for web applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New York, NY, USA, 2012),

CHI ’12, Association for Computing Machinery, p. 1549–1558.

[5] Chilana, P. K., Ko, A. J., Wobbrock, J. O., and Grossman, T. A multi-site

field study of crowdsourced contextual help: usage and perspectives of end

users and software teams. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (New York, NY, USA, 2013), CHI ’13, Association

for Computing Machinery, p. 217–226.

[6] Collard, M. L., Decker, M. J., and Maletic, J. I. srcml: An infrastructure for the

exploration, analysis, and manipulation of source code: A tool demonstration. In

2013 IEEE International Conference on Software Maintenance (2013), pp. 516–519.
[7] Friedman, N. Welcome semmle to the github family. https://github.blog/news-

insights/company-news/github-welcomes-semmle/, Nov. 2019. Accessed: 2025-

04-16.

[8] LaToza, T. D., Venolia, G., and DeLine, R. Maintaining mental models: a study

of developer work habits. In International Conference on Software Engineering
(ICSE) (2006), pp. 492–501.

[9] Ltd., M. Facebook to acquire monoidics’ assets! https://archive.ph/

20130718144452/http://www.monoidics.com/uncategorized/facebook-to-

acquire-monoidics-assets, 2013. Accessed: 2025-04-16.

[10] Markman, G. D., Gianiodis, P. T., Phan, P. H., and Balkin, D. B. Innova-

tion speed: Transferring university technology to market. Research Policy 34, 7
(2005), 1058–1075. The Creation of Spin-off Firms at Public Research Institutions:

Managerial and Policy Implcations.

[11] Mehrpour, S., and LaToza, T. D. Can program analysis tools find more defects?

a qualitative study of design rule violations found by code review. Empirical
Software Engineering (EMSE) 28, 1 (nov 2022).

[12] Mehrpour, S., LaToza, T. D., and Kindi, R. K. Active Documentation: Helping

Developers Follow Design Decisions. In Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (2019), pp. 87–96.

[13] Mehrpour, S., LaToza, T. D., and Sarvari, H. Rulepad: interactive authoring

of checkable design rules. In European Software Engineering Conference and
International Symposium on the Foundations of Software Engineering (ESEC/FSE)
(2020), pp. 386–397.

[14] Planview, I. Planview announces strategic acquisition of tasktop.

https://newsroom.planview.com/planview-announces-strategic-acquisition-of-

tasktop/, May 2022. Accessed: 2025-04-16.

[15] Postman. Postman acquires akita for automated api observability. https://blog.

postman.com/postman-acquires-akita-for-automated-api-observability/, Jan.

2025. Accessed: 2025-01-14.

[16] Redwine, S. T., and Riddle,W. E. Software technologymaturation. In Proceedings
of the 8th International Conference on Software Engineering (Washington, DC,

USA, 1985), ICSE ’85, IEEE Computer Society Press, p. 189–200.

[17] Rogers, E. M. Diffusion of innovations. Free Press, New York, 2003.

[18] Rothaermel, F. T., Agung, S. D., and Jiang, L. University entrepreneurship:

a taxonomy of the literature. Industrial and Corporate Change 16, 4 (07 2007),
691–791.

[19] Sawers, P. Sapienz: Facebook’s push to automate software testing.

https://venturebeat.com/business/sapienz-facebooks-push-to-automate-

software-testing/, December 2018. Accessed: 2025-04-16.

[20] Siegel, D. S., Veugelers, R., and Wright, M. Technology transfer offices and

commercialization of university intellectual property: performance and policy

implications. Oxford Review of Economic Policy 23, 4 (01 2007), 640–660.
[21] Synopsys, I. Synopsys enters software quality and security market with coverity

acquisition, 2014. Accessed: 2025-04-16.

https://github.blog/news-insights/company-news/github-welcomes-semmle/
https://github.blog/news-insights/company-news/github-welcomes-semmle/
https://archive.ph/20130718144452/http://www.monoidics.com/uncategorized/facebook-to-acquire-monoidics-assets
https://archive.ph/20130718144452/http://www.monoidics.com/uncategorized/facebook-to-acquire-monoidics-assets
https://archive.ph/20130718144452/http://www.monoidics.com/uncategorized/facebook-to-acquire-monoidics-assets
https://newsroom.planview.com/planview-announces-strategic-acquisition-of-tasktop/
https://newsroom.planview.com/planview-announces-strategic-acquisition-of-tasktop/
https://blog.postman.com/postman-acquires-akita-for-automated-api-observability/
https://blog.postman.com/postman-acquires-akita-for-automated-api-observability/
https://venturebeat.com/business/sapienz-facebooks-push-to-automate-software-testing/
https://venturebeat.com/business/sapienz-facebooks-push-to-automate-software-testing/

	Abstract
	1 Introduction
	2 Related Work: Research Tech Transfer
	3 Basic Research
	4 Building a Company
	4.1 Funding and Intellectual Property
	4.2 Branding and Marketing
	4.3 Mentorship Resources
	4.4 Building a Team

	5 Customer Discovery
	5.1 Identifying a Value Proposition
	5.2 Customer Discovery Process
	5.3 Onboarding and Software Documentation
	5.4 Adoption of Developer Tools

	6 Challenges Starting a Company
	7 Lessons from a Failed Startup: Insights on Tech Transfer for Researchers
	8 Acknowledgments
	References

