This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Follow-up Attention: An Empirical Study of
Developer and Neural Model Code Exploration

Matteo Paltenghi, Rahul Pandita, Austin Z. Henley, Albert Ziegler

Abstract—Recent neural models of code, such as OpenAl
Codex and AlphaCode, have demonstrated remarkable pro-
ficiency at code generation due to the underlying attention
mechanism. However, it often remains unclear how the models
actually process code, and to what extent their reasoning and
the way their attention mechanism scans the code matches the
patterns of developers. A poor understanding of the model
reasoning process limits the way in which current neural models
are leveraged today, so far mostly for their raw prediction. To
fill this gap, this work studies how the processed attention signal
of three open large language models - CodeGen, InCoder and
GPT-J - agrees with how developers look at and explore code
when each answers the same sensemaking questions about code.
Furthermore, we contribute an open-source eye-tracking dataset
comprising 92 manually-labeled sessions from 25 developers
engaged in sensemaking tasks. We empirically evaluate five
heuristics that do not use the attention and ten attention-based
post-processing approaches of the attention signal of CodeGen
against our ground truth of developers exploring code, including
the novel concept of follow-up attention which exhibits the highest
agreement between model and human attention. Our follow-up
attention method can predict the next line a developer will look
at with 47% accuracy. This outperforms the baseline prediction
accuracy of 42.3%, which uses the session history of other
developers to recommend the next line. These results demonstrate
the potential of leveraging the attention signal of pre-trained
models for effective code exploration.

I. INTRODUCTION

Large language models (LLMs) pre-trained on code such
as Codex [1], CodeGen [2], and AlphaCode [3]] have demon-
strated remarkable proficiency at program synthesis and com-
petitive programming tasks. Yet our understanding of why they
produce a particular solution is limited. In large-scale practical
applications, the models are often used for their prediction
alone, i.e., as generative models, and the way they reason about
code internally largely remains untapped.

These models are often based on the attention mechanism
[4], a key component of the transformer architecture [5].
Besides providing substantial performance benefits, attention
weights have been used to provide interpretability of neural
models [6, [7, 8]]. Additionally, existing work [9} [10, [L1} [12]]
also suggests that the attention mechanism reflects or encodes
objective properties of the source code processed by the model.
We argue that just as software developers consider different
locations in the code individually and follow meaningful

Matteo Paltenghi is with the University of Stuttgart, Stuttgart, Germany. E-
mail: mattepalte@live.it. Work done while at GitHub Next for a research
internship. Rahul Pandita and Albert Ziegler are with GitHub Inc, San
Francisco, CA, USA. E-mail: {rahulpandita, Wunderalbert}@ github.com.
Austin Z. Henley is with Microsoft Research, Redmond, WA, USA. E-mail:
azh321 @gmail.com.

connections between them, the self-attention of transformers
connects and creates information flow between similar and
linked code locations. This raises a question:

Are human attention and model attention comparable? And

if so, can the knowledge about source code conveyed by the

attention weights of neural models be leveraged to support
code exploration?

Although there are other observable signals that might cap-
ture the concept of relevance, such as gradients-based [[13} [14]]
or layer-wise relevance propagation [15]], this work focuses on
approaches using only the attention signal. The reasons for
this choice are two: (1) almost all state-of-the-art models of
code are based on the transformer block [5]], and the attention
mechanism is ultimately its fundamental component, so we
expect the corresponding attention weights to carry directly
meaningful information about the models’ decision process;
(2) attention weights can be extracted almost for free during
the generation with little runtime overhead since the attention
is computed automatically during a single forward pass.

Answering the main question of this study requires a dataset
tracking developers’ attention. In this work, we use visual
attention as a proxy for the elements to which developers
are paying mental attention while looking at code. However,
the existing datasets of visual attention are not suitable for
our purposes. Indeed, they either put the developers in an
unnatural, and thus possibly biasing, environment where most
of the vision is blurred [8], requiring participants to move the
mouse over tokens to reveal them, or they contain few and
very specific code comprehension tasks [16] on code snippets
too short to exhibit any interesting code navigation pattern.
This blurring method can introduce bias by forcing unnatural
interactions, potentially affecting how developers naturally
explore and understand code. To address these limitations
and stimulate developers to not only glance at code, but
also to deeply reason about it, we prepare an ad-hoc code
understanding assignment called the sensemaking task. This
involves questions on code, including mental code execution,
side-effects detection, algorithmic complexity, and deadlock
detection. Moreover, using eye-tracking, we collect and share
a dataset of 92 valid sessions with developers.

On the neural model side, motivated by some recent suc-
cessful applications of few-shot learning in code generation
and code summarization [17, 18] and even zero-shot in pro-
gram repair [19], the sensemaking task is designed to be
a zero-shot task for the model with a specific prompt that
triggers it to reason about the question at hand. Then we
query three LLMs of code, namely CodeGen [2]], InCoder [20]]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

and GPT-J [21] on the same sensemaking task and compare
their attention signaﬂ to the attention of developers. The
correlation with CodeGen, the largest model, is the highest
among the LLMs studied (r=+0.23), motivating the use of raw
and processed versions of CodeGen’s attention signal for code
exploration. To that end, we experimentally evaluate how well
existing and novel attention post-processing methods align
with the code exploration patterns derived from our dataset’s
chronological sequence of eye-fixation events. To the best of
our knowledge, this work is the first to investigate the attention
signal of these pre-trained models to support code exploration,

a specific code-related task, directly related to code reading

work [22} 23]].

We empirically demonstrate that post-processing methods
based on the attention signal can be well aligned with the
way developers explore code. In particular, using the novel
concept of follow-up attention, we achieve the highest overlap
with the developers’ ground truth on which line to explore
next.

Contributions: This paper makes the following contributions:

* Sensemaking Task A novel task and setup to deepen our
understanding of how the LLM attention connects to the
temporal sequence of location shifts regarding developer
focus.

* Eye-Tracking Dataset A novel dataset of 92 eye tracking
sessions of 25 developers engaged in sensemaking tasks
while using a common code editor with code written in three
popular programming languages (Python, C++, and C#).

* Follow-up Attention The analytical formula for follow-up
attention, a novel post-processing approach derived solely
from the attention signal, which aligns well with the devel-
oper interaction of which line to look at next when exploring
code.

* Empirical Study The first comparison of both effectiveness
and visual attention of LLMs and developers when rea-
soning on sensemaking questions. An empirical evaluation
comprising ten post-processing approaches of the attention
signal, five heuristics, and an ablation study of the follow-
up attention against the collected ground truth of developers
exploring code.

II. RELATED WORK

This section provides an overview of related work around
the explanatory role of attention and previous studies of the
attention of neural models and developers when reasoning on
code.

Attention as explanation. Initially, preliminary work [24]
studying attention weights of recurrent neural models has
found that the attention weights do not always agree with
other explanation methods and that alternative weights can
be adversarially constructed while still preserving the same
model prediction. However, in response, Wiegreffe and Pin-
ter [25] have shown how the alternative attention weights
can be constructed only per a single instance prediction,
whereas obtaining a model which is consistently wrong in

! Attention signal refers to the attention weights produced during a forward
pass by the transformer blocks.

its explanations is very unlikely to happen. On the same
line, Tutek and Snajder [26] have proposed four regularization
methods to mitigate the adversarial exploitation of attention
weights for recurrent models, including the use of residual
connections which are natively embedded into transform-
ers [3], the building blocks of the LLMs studied in this work.
To further corroborate this connection between attention and
explanation, Rabin et al. [27] have shown how even Sivand,
an explainability technique based on program simplification,
pinpoint important tokens which largely overlap with those
reported by the attention mechanism.

Attention studies of neural models of code. Paltenghi
and Pradel [8]] have compared the attention weights of neural
models of code and developers’ visual attention when perform-
ing a code summarization task, and found a strong positive
correlation on the copy attention mechanism for an instance of
a pointer network [28]]. Further works [9] [11] have then shown
how the attention weights of pre-trained models on source
code capture important properties of the abstract syntax tree
of the program. However, none of them considered the use
of the attention signal for a code-related task, such as code
exploration. Moreover, they are limited to relatively small self-
attention transformer models, whereas we study the attention
of CodeGen [2], InCoder [20] and GPT-J [21], large generative
models with masked self-attention.

Eye-Tracking Studies Turner et al. [29]] conducted an eye-
tracking study involving 38 students fixing or describing five
simple Python and C++ programs (5-13 LoC) showing that the
fixation duration is comparable between the two languages.
Beelders [30] has qualitatively observed the eye movement
of 36 students and four lecturers when reading and mentally
executing a short C# program (12 LoC). An eye-tracking
dataset with 216 participants has been collected by [16],
however, they only consider two short snippets (11-22 LoC) of
code, since they do not support scrolling. Similarly, Blascheck
and Sharif [22] and Busjahn et al. [23]] have studied the reading
order in C++ and Java code comprehension task focusing
on six small programs that could fit into a single screen,
whereas we consider longer snippets and a much larger dataset
of 45 unique tasks. Sharifi et al. [31] have recently studied
code navigation strategies on Java code with eye tracking
involving 36 participants focusing on the bug fixing process,
however, we study the sensemaking task which might elicit a
different kind of reasoning compared to bug-fixing. To more
closely mimic real-world setups in integrated development
environments (IDEs), Guarnera et al. [32] propose iTrace,
an eye-tracking plugin for IDEs that can track developers’
eye movements in more realistic and dynamic coding envi-
ronments beyond a single screen of code. Further studies,
including Fakhoury et al. [33], have proposed Gazel, an IDE
plugin that supports eye tracking in the context of source code
editing. Following this latest trend, we also use an IDE plugin
to collect the eye-tracking data, allowing for a more realistic
coding environment.

III. SENSEMAKING TASK

To study developers’ and models’ attention, we prepare a
code understanding task called sensemaking task because the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

F ok ok ok ok sk ok kR kR K ok K ok Kk Kk ko ok ok ko ko ok ok ko kK Kk Kk Kk Kk ok ok ok ok ok ok

> # The following code reasons about triangles in the

geometrical sense.

3 class point:

def __init__ (self, x, y):
self.x = x
self.y =y

7 def square (x) :

8
9
10

return x *x X
def order(a, b, c):

copy = [a, b, c]

copy.sort ()

return copyl[0], copyl[l]l, copyl[2]
pl = point (0, 0)
5 p2 = point (1, 1)
p3 = point (1, 2)
classifyTriangle (pl, p2, p3)

Question: What could happen if the call to ‘order

() ¥ were omitted from
‘classifyTriangle‘?
Answer:

Fig. 1: Example of sensemaking task with code and question
to be answered in the bottom comment. Completely empty
lines have been removed for space reasons.

developer has to “make sense” of code to answer the question
correctly. One sensemaking task is contained in a single source
code file p composed of four sections: (1) a brief description
of the context of the main code snippet (e.g., The following
code reasons about triangles in the geometrical sense.), (2) the
main code snippet, either sourced on the internet or written
from scratch by the authors, (3) a sensemaking question to
stimulate the reasoning (i.e., Question:), and (4) a final
prompt to trigger the model’s answer (i.e., Answer:). Note
that all the sections except the main snippet are in the form
of code comments. Figure [T] shows an example task, whereas
the full list of questions can be seen in the Table [[}

To source the tasks for our study, we rely on Geeks-
forGeek a well-known website for programming education
and practice. This website offers a variety of problem state-
ments that are commonly used in typical technical interviews
by modern software companies, as shown by previous re-
search [34]. Therefore, we expect that the software developers
would have some familiarity with the type of these programs.
We then create specific sense-making questions about these
programs, inspired by the kind of questions that an interviewer
might pose, such as asking about the output, complexity, cor-
rectness, or code modification. Indeed, many of our questions
are concrete instances of question templates such as “What
is the purpose of the code?”’ (nqueens_01), “What is the
program supposed to do?” (tree_03) or “What code could
have caused this behavior?” (triangle_Q1), which also have
been identified as questions that software engineers often ask
themselves in a real working setting [35]. To stimulate code
exploration, many of them are also instances of reachability
questions [36]; namely, they involve the search over all feasible
paths of a program to locate target statements matching
search criteria. Some examples of these are “What are the

Zhttps://www.geeksforgeeks.org/

implications of this change?” (triangle_03) or “How does
application behavior vary in these different situations that
might occur?” (triangle_Q2, tree_Ql, multithread_Q3).
We prepare five main snippets and create three unique ques-
tions for each of them. Then we translate the same task into
three programming languages: Python, C++, and C#. In total,
we have 45 unique tasks. Although the sensemaking task
includes questions that might have also been asked in studies
focused on code comprehension [37], the main difference is
those studies typically restrict the scope of their questions to
either bottom-up [37] or top-down comprehension [38]] tasks.
Whereas, in our sensemaking task, beside code snippet and
question, participants receive also the header of the file with
some contextual information, which creates an unusual blend
of bottom-up and top-down comprehension tasks which is
typically not seen in code comprehension studies which focus
on either one or the other. This decision is motivated by our
goal of stimulating code exploration, where the participants
have to integrate different pieces of information at different
locations and create an integrated mental model.

Neural Model’s Task. We feed the entire source file of
a single task as input, also referred to as prompt, to the
generative model and query it for three different answers in
the form of text completion. A model processes the input
file p by splitting it in tokens via a deterministic tokenizer
(p = t1,...,t,) and then generates a sequence of tokens as
output, as shown on the left of Figure 2] We allow the models
to generate an answer of length 100 tokens at maximum, which
is more than enough to respond to all the questions. We use
three widely used open source pre-trained models namely:
CodeGen [2] in its language-agnostic Varian InCoder [20]
and GPT-J [21], all in their largest variants of 16B, 6B and 6B
of parameters respectively. To query the model multiple times
we use the temperature sampling strategy with a temperature
of 0.2.

Developers’ Task. We recruit 25 software developers via di-
rect contacts at a large software company, ranging from interns
to more senior software engineers, thus having diverse degrees
of familiarity with software development and programming.
We track the eye gaze of each participant during a 19 minutes
session (on average) while they answer as many questions as
possible, typically three or four. We ensure they see each main
code snippet only once to avoid bias in answering a question
on a snippet they have already explored in a previous task.
The eye-tracking setup is calibrated at the beginning of each
task to ensure consistent data collection.

IV. PROBLEM FORMULATION

The majority of modern large language models (LLMs)
are based on the architecture of generative pre-trained trans-
formers (GPT) [39], such as Codex [1l], CodeGen [2], and
AlphaCode [3]. Self-attention is a mechanism used in these
models that allows each processed token to weigh its own
importance with respect to other tokens in the same sequence,
enabling the model to capture relationships and dependencies
within the sequence. In particular, the representation of each

3CodeGen-16-multi from https:/github.com/salesforce/codegen

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.geeksforgeeks.org/
https://github.com/salesforce/codegen

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Snippet Name Content LoC Question

nqueens_Q1 N 78-100 What does ‘solveNQ(-13)‘ return?

nqueens_Q2 qu;eens 78-101 What are valid dimensions and values for the array ‘board‘?

nqueens_Q3 probiem 78-100 How would you expect the run time of ‘solveNQ(n) to scale with ‘n‘?

hannoi_Q1 Tower of 28-49 How does the algorithm moves disks from the starting rod to the ending rod?

hannoi_Q2 Hanoi 26-47 Which is the base case of the algorithm?

hannoi_Q3 problem 28-50 Which is the name of the auxiliary rod in the call TowerOfHanoi(n, 'Mark’, "Mat’,
"Luke’)?

multithread_Q1 Consumer- 106-116 Is it possible that consumer and producers threads end up in a deadlock state; namely

producer they both wait for each other to finish, but none of them is doing anything?

multithread_Q2 threads 104-112 Is there any line of code in the consumer or producer code that will never be executed?
If yes, report it below.

multithread_Q3 104-113 Will the queue object ever raise an exception in this program? If yes, which condition(s)
should be met for the exception to be raised?

tree_Q1 Recursive 87-99 How many calls to ‘constructTreeUtil® will ‘constructTree([1, 2, 3], [1, 2, 3], 2)* make?

tree_Q2 tree 87-99 Under which conditions could the check ‘if i j= h* in ‘constructTreeUtil* be false?

tree_Q?3 construction 89-101 A part of the code you don’t have direct access to has called ‘constructTree‘ with unknown
parameters. What can you find out about those parameters?

triangle_Q1 . 66-112 Which of the functions have side effects (namely it modifies some state variable value

Triangle S . o
. classification outslde its local environment? .
triangle_Q?2 66-113 Which output will you get for the three points [1, 2], [1, 3], and [1, 4]?
triangle_Q3 66-112 What could happen if the call to ‘order()* were omitted from ‘classifyTriangle‘?

TABLE I: Code snippets and related questions for each sensemaking task.

token can incorporate information from tokens that come
earlier in the sequence, and on the contrary cannot incorporate
information from tokens that come later in the sequence. In
this work, when a token A incorporates information from
another token B, we say that A attends to B, or equally that
token A pays attention to token B. This attention is usually
quantified by a scalar value, called attention weight, which is
computed by the model in its attention mechanism.

When the model takes as input a sequence of x tokens, the
attention mechanism is applied to each token in the sequence.
Figure 2| on the left shows a toy example with a model of
three layers and two attention heads, together with the attention
generated by the model. For each token, the attention is com-
puted sequentially through the L layers of the neural model
and, at each layer, the attention is computed in parallel H
times, once for each sub-network called attention head. Fixing
a combination of layer and head, the attention given by i-th
token to the other tokens of the sequence can be represented
by a vector of weights: a; = (a; 1, @2, -, @iiy 0i i1, -, 0i)
where a; ; is the weight given by token at position 4 to token
at position j. Note that the token cannot attend any token that
come later in the sequence, thus the weights a; ; are zero for
j > 1. Stacking the attention vectors one after the other as
row, we obtain an attention matrix A = (a1, as, ...,a;) for
the specific combination of layer and attention head, note that
it is a lower triangular matrix.

Thus, when the input file comprising n tokens (%1, ...,%,)
is fed to the model f, beside a predicted answer of m newly
generated tokens (f,,41, ..., th+m), the model also computes an
attention tensor A of shape (L, H,n + m,n +m), where L is
the number of layers and H is the number of attention heads.
In particular, when comparing developers’ and the model’s
attention, we focus on studying the attention weights referring

to the prompt tokens only, even if some post-processing
approach may use the entire tensor A.

Note that by construction, not all tokens can attend to all
other tokens, thus we define the notions of followers of a token
t; as the set of tokens that can pay attention to ¢;. This set is
defined as F(t;) = {t; | j > i}, where the subscript represents
the position of the token in the sequence.

A. Views of Attention

In our problem formulation, we model an extraction func-
tion g that takes as input the attention tensor A and returns
either a measure of how much attention the model pays to
each part of the prompt or a measure of how much each part
is linked to other parts of the prompt. Depending on the case,
we refer to the outputs as visual attention vector or interaction
matrix respectively.

Visual Attention Vector. It is a static view telling us which
part of the input is important for the model when solving the
sensemaking task. We define a visual attention of a model as
a vector a = (ay, ..., a.) over the ¢ characters of the prompt,
where each a; intuitively tells us how much attention was
given to that the ¢-th character when solving the task. We use
gviz(A) to model a function that takes as input the attention
tensor A and returns a visual attention vector a.

Interaction Matrix. It is a dynamic view that tells us, given
a position in the prompt, which other position of the prompt is
more deeply connected to it. We define an interaction matrix
S as a right stochastic matrix with size n X p where n is
the number of tokens in the prompt and p is the number
of admissible target positions in the prompt. We distinguish
two kinds of interaction matrices depending on the granularity
of the target position p, either pointing to another token or
line in the source code (the latter being of interest primarily

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

1. Generation Phase

L = 3 (nr. of layers)
H =2 (nr. of heads)

2. Post-Processing Phase 3. Human Comparison

Interaction Interaction

; L3 H Matrix Smm\' Matrix S,,,,(
,E! H1 ,E! H2 : 1 ,E!
4 (generated tokens Bl B : @’ H
imennl P ' ' prompt
TTTT e T ' ; 33l er
| | only 44h
B H1 [H2 : == Follow-U St et
i j=m = - - 0 p ve’ H
g s . R BB @ E s
§ ..'3 T [Eannns} ! 3 ' v
= Layer 2 LA ; :
g L Hi B H2 | : FEERN v
2 Laver 1 n ;;th : | g " - A Char-level
L ™ B @y e (), 2R Meanol, o drmmm
?t?t? : | Pt Eee only followers ~ Token-level
' i T T
SN EREE Mean Visual Attention a
5 (prompt tokens) — (prompt only)

Fig. 2: Overview of the three extraction functions for the visual attention vector and the interaction matrix, both follow-up
and mean. Note that a and b represent specific aggregation functions as explained in the text (e.g., mean, max or sum). The
darker the red color, the more attention is paid to by token on the row i to the token on the column j.

with developer tooling in mind, which is often line based).
Respectively, we call them: (1) token-level, where S has size
n x n where n is the number of tokens in the prompt; (2)
line-level, where S has size n x n; where n; is the number of
lines in the prompt. We use gioken (A) and giine(A) to model
two functions that take as input the tensor A and output an
interaction matrix, either Siogen Or Syine respectively.

V. EXTRACTION FUNCTIONS

We investigate two algorithms for extracting the visual
attention vector and four for the interaction matrix.

A. Attention Extraction Overview

Figure [2] illustrates the process of querying the model and
extracting its attention signals, leading to the comparison
with human developers. In particular, it shows how to the
attention tensor A is derived by querying the model, and
how to post process it to extract both the interaction matrix
Stoken and the visual attention vector a. It is split in three
phases: generation, post-processing, and human comparison.
In the generation phase, a neural model with L layers and H
attention heads processes n prompt tokens to generate both m
tokens and an attention tensor A. Here, the model has three
layers and two attention heads, handling five prompt tokens
and generating four new tokens. During the post-processing
phase, the attention tensors are aggregated to form interaction
matrices Sioken Using two techniques: mean aggregation and
follow-up attention, as explained in Section [V-C| Note that
the matrices are cut to consider only the attention to the
n tokens of the prompt. Then, the interaction matrix from
token-to-token is converted to the line-level interaction matrix
by aggregating the attention weights of the tokens belonging
to the same line, obtaining Sj;,.. At this point, the visual
attention vector a is extracted from the Si,r., matrix (see
Section [V=B) and converted to the character level. In the last
phase, the interaction matrices Sj;,. and the visual attention
vectors a are compared with human data collected via eye-
tracking.

B. Visual Attention Vector Extraction

We introduce two alternative approaches called attention
mean and attention max to condense the attention tensor A to
the visual attention vector a, namely to implement g,;,(A) :
A — a. The first approach is visualized in the bottom part of
Figure

Attention mean. It aggregates over all the layers L and
attention heads H by taking the average attention weight for
each token position. After keeping only the prompt tokens,
this step outputs a matrix A with shape (n,n) where each
element A; ; is the average attention paid by the i-th token to
the j-th token in across all layers and heads. Note that it is a
lower triangular matrix because a token cannot attend tokens
coming after it by construction. Then, we compute the mean
of each column excluding the zeros to avoid penalizing more
recent tokens with fewer followers. This step corresponds to
represent each token ¢; with the average attention given to it by
its followers F(t;), thus we call the step mean of followers. It
outputs a token-level visual attention a vector that is converted
to character-level vector, by dividing the attention weight on
a single token in equal shares among all its characters.

Attention max. This approach differs from the previous one
in how it condenses layers and heads in the first step, replacing
the mean with the max function to favor the extremely positive
signals appearing only in one or few layers and heads; the rest
is unchanged.

C. Interaction Matrix Extraction

We study four approaches: mean, max, rollout and follow-
up attention. Apart from the rollout attention, which has been
introduced by [40], the other three are either inspired by the
work of [8] or a novel contribution of this work, such as the
follow-up attention.

Attention mean. It computes the mean among all the L
layers and H attention heads: ¢,,can = ﬁ Zle Zthl A

Attention max. It computes the max among all the L layers
and H attention heads: gpq. = rnale:1 max,l?:1 A

Rollout attention. It propagates the information contained
in the attention weights layer by layer from input to output

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Algorithm 1: Follow-up Attention

1 Function FollowUpAttention:

Imput : A; // Dimensions: (L,H,n+m,n+m
Output: S ; // Dimensions: (n,n
2 CP<+(; // CP: Consecutive layer pairs
3 L« ZhH:1 Ah
4 for z<1to L —1do
5 SE
6 for i < 1 to n do
7 for j < 110 n do
8 s < n+m — max(i,7)
9 ffz) — Lz,s:,i
10 f]{z-’_l) — Lz+1,s:,j
11 (=) fi(Z)'fJ('ZH)
N CTNIF I SRl
12 | CP+—CPUS®
13 S%ZS(Z)GCPS(Q
14 | return S

by multiplying the attention weights along multiple paths
starting and ending in the same input-output pair. Since it
does not model the attention head dimension, we condense
that dimension via a simple sum. There is no a priori criterion
for which attention layer should be used in the end. Thus, we
sum the rollout values of all the layers. [40] for more details.

Follow-up attention. It is our novel approach that centers
on modeling the flow of information between subsequent
layers. The intuition behind it is that follow-up attention tracks
whether a token being attended to in one layer will cause a
different token being attended to in the next layer. This is the
model analogue of tracking humans jumping from attending
one token to attending a different token next.

Algorithm |1{ summarizes the entire procedureﬂ which is
also represented in Figure [2] Similarly to the rollout attention,
we aggregate the attention weights over the H attention
heads by summing the weights of A along the attention
head dimension and obtaining a layer-wise attention L, a 3-
dimensional tensor (Line[3). The follow-up attention explicitly
models the temporal relationship between the attention weights
computed at different layers since the attention weights in the
later layers depend on the earlier ones. The intuition is that
the layer-after-layer transformation reflects how the models
explore code through time, similar to multiple successive
fixations of a developer when navigating and exploring source
code. Instead of looking at how the token gives attention to
other tokens in the same layer, the follow-up attention adopts
a differential approach which compares the attention received
by token ¢ at layer z with the attention received by token j
at layer z — 1. To represent this received attention, we define
the follower score fi(z) of token ¢ at layer z, as the vector
of the attention quota that each other token (which we call
observers) gives to token ¢ at the same layer (Line [9). Note
that, similarly to the attention vector, the follower score is
also a vector of real numbers and it has the same length
corresponding to the input sequence length, thus representing
a complementary viewpoint. To realize the agreement between

4An optimized vectorized version is available here https:/anonymous.
4open.science/r/attention-study-eye-tracking

follower scores at two consecutive layers, we use the cosine
similarity as a soft version of the intersection between the set
of followers of the two tokens (Line [TT). Then we compute
the follow-up attention for each ordered pair of tokens ¢ — j
(Lines and for each pair of consecutive layers (Line) and
condense all layer pairs into a single matrix via sum (Line [I3).
We aggregate attention over multiple layers since [41] have
empirically shown how token identifiability is retained over
layers, thus a generic embedding at position e; in any layer [
is traceable to the input embedding x; in the input sequence.

VI. CODE EXPLORATION DATASET

TABLE II: Participants’ Professional Software Development
Experience

Experience (years) 1-2 24 46 >10
Number of Participants 8 7 3 3 3

<1

We conduct an eye-tracking study and collect a novel
dataset comprising 25 participants across 92 valid sessions.
Participants’ professional software development experience is
summarized in Table [T} Additionally, 24% of participants have
more than 4 years of experience. The dataset contains 17.4%
(16) of sessions on C++ code, 43.5% (40) on C# code, and
39.1% on Python code (36).

The sessions are single-purpose and live-monitored by an
experimenter to ensure correct setup and focus on the code
exploration task. While each participant has 45 minutes to
solve as many tasks as possible, due to calibration and transi-
tion times, on average, they spend an average of 18.54 minutes
exploring code using the IDE, with an average of 4.92 minutes
per single question. A pair of code snippet and question is
looked at by a median number of 3 different participants,
and each code snippet is looked at by a median number of
7 different participants. No participant is presented with the
same code snippet more than once.

Each session consists of a sequence of eye fixation events
evteye, each represented as a tuple (t,z,y,d) where t is
the timestamp in milliseconds, z and y are the coordinates
of the fixation point in pixels and d is the duration of the
fixation in milliseconds. The average of fixations per session
is 603.66. Each session is recorded in Visual Studio Codd] to
have a natural coding environment. Based on the size of the
parafoveal region [42]], each eye fixation event is converted to
column and line coordinates: evt(ez}éw) = (t,c,l,d) where ¢
is the column, and ! is the line of the original source file.

A. Eye Tracking Setup

To collect the eye tracking data, we use an eye tracker
from GazePoint (model GP3, with 0.5 — 1 degree of visual
angle accuracy), which is placed below the monitor thus not
requiring the user to wear any additional device. Note that
our setup is as close as possible to a normal coding session
without any invasive or unnatural methods. The participants

Shttps://code.visualstudio.com/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://anonymous.4open.science/r/attention-study-eye-tracking
https://anonymous.4open.science/r/attention-study-eye-tracking
https://code.visualstudio.com/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

can see between 21 and 26 lines of code. The screen size is
52.7 mm x 29.6 mm with a resolution of 1920x1080 pixels.
The participant seats at a fixed distance of approximately 30
cm from the screen. The fixation are computed by the internal
fixation filter of the eye tracker, which uses a custom algorithm
based on displacement [43], using the FPOG (Fixation Point of
Gaze) data streanﬁ Eye-tracking data are pre-processed using
custom code in Python (version: 3.8) described next below
and openly shared (see Data Availability).

Besides collecting the eye tracking data evtcye, our setup
also collects evty,; coming from a custom VSCode plugin that
logs the visible text on the screen. A visible text event evt,,
corresponds to a tuple (¢, txt, f,1) where t is the timestamp in
milliseconds, tzt is the visible text, f is the file name shown in
the code area, [is the line number of the first visible line with
respect to the given file. Note that this event is crucial since we
study long code snippets and allow also screen scrolling. To
ensure that we have a consistent grid mapping between pixel
positions and char positions in the text, we use a monospace
font, prevent partial scrolling and prevent any resizing of the
code area during the experiment. Then, for each timeframe, we
map the pixel of each eye fixation event to a specific character
position in the code area by using a grid over the character
positions identified by a line and column.

To derive the developer attention maps from the eye tracking
data, we first synchronize data from the VSCode plugin and
the eye tracker, via their timestamps. Then, we convert the
fixation point of gaze x and y coordinates of each evt.y. to
the corresponding character line and column coordinates in
the relative coordinate system of the code area. And knowing
the line number [, we can attribute the fixation to a specific
character position in the original file. In this way, we convert
each evt.,. to its equivalent event in character coordinates
evt) — (¢ ¢,1,d) where ¢ is the timestamp, c and [are
the column and line coordinates with respect to the original
file of the fixation point and d is the duration of the fixation.

Since it is hard to tell whether, during a single fixation event,
a participant is looking at a specific character or a group of
neighboring characters, we attribute the developer’s attention
to neighboring characters. In particular, if the developer looks
at position (c¢,l) in the original file, we augment our data
by introducing new events which point to all the neighboring
characters within a vertical offset v, and a horizontal offset
hog from our coordinate (c,l). As a result, we replace each
basic evté@ﬁam = (t,¢,l,d) with the set of derived events
(t, Crew, lnew,d) Where ¢ — hog < Cpew < ¢+ hog and
I —vop < lpew < 1+ vog. This is strictly connected to
the concept of fovea region. Indeed, as reported by [42], our
fovea region, which is responsible for a sharp central vision,
accounts for 2° of the visual field, whereas the parafoveal
region, which is used for visual search and scene perception,
accounts for 5° of the visual field. Thus considering 5° visual
region and our screen size (527mm x 296mm), the developer
can see 7.16 characters horizontally and 2.92 characters verti-
cally. Rounding those quantities we set v, = 1 and hog = 4.

6Manual: |https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf

1.00 1 N Py
, , oot ft— (6 4d))
0.75 1 1 1 1 1
= 1 1 I
20501 1t | E
; 1 1 1 1
0.25 : :ti+di : :tj+dj
1 1 | 1
0.00 1 T 1 T T L L T T
0 2 4 6 8 10 12

Time (sec.)

Fig. 3: Example of two events where the yellow area corre-
sponds to their contribution to the connection strength between
from token ¢ to token j.

This approach also contributes to mitigating any small x and
y errors in the eye-tracking data collection.

B. Ground Truth Visual Attention

Here we borrow from the concept of human attention pro-
posed by [8] and define the analogous developer attention as
the total time that a specific char was visible to the participant
(i.e., in their field of vision): d = (ds, ..., d.) where c is the
number of characters in the prompt and d; is the total time
that the -th character was visible to the participant according
to the eye tracking data. In contrast to [8], we consider the
char-level instead of the token level because it is more natural
for our eye-tracking data.

C. Ground Truth Interaction Matrix

From each developer session, we derive a ground truth
interaction matrix S. For a fair comparison of neural models
with developers, we take into account the tokenization used
by the neural model, namely we use the CodeGen tokenizer
which is based on byte-level byte-pair-encoding [44].

To convert char-level events into token-level ones, for each
timestamp, if at least one character of a given token is visible,
then the token is considered visible as well and we count
the corresponding event evtlsr®™ = (¢,i,d) where t is the
timestamp, ¢ is the token index and d is the event duration.
Based on the pairs of events involving token ¢ and token j,
we quantify how likely it is that the developer looks at token
7 after having looked at token 1.

Intuitively, we want to have stronger connection when a
fixation on token i is shortly followed by a fixation on token
7, and if this second fixation has a significant duration. Thus,
we define the strength of the temporal connection between
token ¢ and token j as:

>

evti,evt; EP;

tj-‘rdj
Si,j = efa(t*(ti‘i’di))dt (1)

tj

where P;_,; is the set with all the pairs of events where token
1 is seen before token j and the discounting factor o controls
the decay of the connection the more the two events are far
apart in time. For our experiments we empirically set « = 0.1,
accounting for observed behavior where developers often

"https://huggingface.co/docs/transformers/model_doc/codegen

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.gazept.com/dl/Gazepoint_API_v2.0.pdf
https://huggingface.co/docs/transformers/model_doc/codegen

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Traversing backwards Traversing forwards

o
<
o

— fitted Weibull

— observed data

0.010

0.005

Strength of temporal connection

0.000

—8‘00 fBbO —460 7260 ll) 6 2(‘)0 460 660 860
Distance in tokens from current token
Fig. 4: The strength of the connection S; ; depends signifi-
cantly on the difference ¢ — j. Both cases 7 > j and j > 7 can
be well modelled using a Weibull distribution.

spend several seconds scrolling and presumably shallowly
searching the code. In Figure [3] we show an example of the
integral connecting two consecutive events.

We noticed a strong neighboring effect across the whole
dataset, where the connection between closer tokens tends
to be relatively stronger irrespective of context and content.
Indeed, developers do not jump randomly between likely
locations within the code: they have a significant bias for
staying close to their current position. We, therefore, begin
by attempting to predict the observed strength of the temporal
connection between tokens solely on the basis of their relative
position. We suggest a two-tiered approach: first, consider
whether the developer is traversing forwards or backward,
then use a relative model for how far they will move in
that direction. We expect the ratio of forwards or backward
traversal to be dependent on the exact task, and in fact, in
our dataset the proportion of forward traversal ranged from
45.8% to 78.2%. For each task individually, as well as to
some extent in general, the best simple predicting feature for
traversal direction appears to be the current token position
divided by the total number of tokens, i.e. the ratio of the
document still in front of the developer. Fitting individual
linear regressions for going forward (Eq. [2) and backward
(Eq. |3) (which do not sum up to 1 because of the chance of
returning to the token itself) gives the predictions of

Z S;.; ~ 0.94064 — 0.74599 * ¢ /max (i) (R* =0.56) (2)

J>i

> Sij ~ 0.05261 + 0.74575 « i /max (i) (R* = 0.56) (3)

Jj<i
where the R? values indicate the goodness of fit, 4 is the
token index, max(i) is the total number of tokens in the
document, and the numeric values are the coefficients of
the linear regression. We expect, and find, the distribution
for the distance between consecutive gaze points to be less
dependent on the task. Of a number of standard distributions
we tested against (normal, poisson, lognormal, exponential,
Pareto, Weibull), it is best modeled using a fitted Weibull
distribution, with the best fit of shape = 0.89, scale =
98.14 tokens going forward and shape = 0.88,
= 105.61 tokens going backward (see Figure [4).

scale

Thus, for the code exploration task, to extract relevance be-

yond mere closeness, we normalize each row of the interaction
matrix S by dividing by the average empirical ground truth
distribution where the probability to go to a token constantly
decreases the further away the target token is.

VII. RESULTS

In this section, we compare the visual attention and inter-
action matrix extracted from the attention tensor of neural
models against the ground truth computed from the developers.
We organize our empirical investigation in the following
research questions:

« RQ1: How effective are developers and neural models in
solving sensemaking tasks?

« RQ2: How does the visual attention of developers and
neural models compare?

« RQ3: How is the agreement between developers and neural
models influenced by the programming language?

« RQ4: How do the interaction matrices of developers and
neural models compare?

« RQ5: How is the effectiveness of follow-up attention in-
fluenced by layer choice and number of newly generated
tokens?

RQ1 and RQ2 considers three neural models: CodeGen [ﬂ
GPT-J E] and InCoder [20]. Whereas, for the remaining ques-
tions we focus on the larger and more effective CodeGen
model.

A. RQI: Answer Correctness

To evaluate the effectiveness of the developers and models
in solving the sensemaking task, we annotate each gener-
ated answer by both groups involving four annotators in the
process. We use a scale of three values of correctness: (1)
correct, when the answer touches all the expected correct
points, (2) partial, if at least part of the correct answer is
present or if the answer is wrong but in the same style of the
correct solution (e.g. the Big-O notation), (3) wrong, when the
answer does not contain any correct part. Note that, especially
for the model, if the model generates extra text beyond the
correct or partial answer we ignore the rest if it is incorrect.
Moreover, whenever the question is under-specified we accept
multiple correct answers as long as they are compatible with
the question. To ensure a reproducible annotation process,
all the authors collectively come up with a shared set of
gold-standard answers for each question. Then, two of the
authors independently annotate more than 20% of the answers
generated by the model and the developer, and within two
rounds of annotation followed by discussion, the final set of
gold standard answers is agreed upon. The final agreement
on the 20% of data led to a Cohen’s Kappa of 0.711, 0.898,
0.833 and 0.783 for developers, CodeGen, Gpt-J, and InCoder
respectively, which is considered a very high agreement [45]].
Finally, the remaining 80% of the data is split in half and
annotated only by one of the two authors individually. The
upper part of Figure [5] shows the percentage of correct,

8https://huggingface.co/Salesforce/codegen-16B-multi
9https://huggingface.co/EleutherAl/gpt-j-6B

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

B Correct Partial Wrong

Developers mm 23.9% 30.4%
Incoder 20.7% 62.2%
Gpt-j m12.6% 63.7%
CodeGen m 15.6% 60.7%

Developers (only py) 122%mmmmmm 13.9% 38.9%
Developers (only cs)] 27.5% 27.5%
Developers (only cpp - 37.5% 18.8%

55.6%
68.9%
62.2%
55.6%
66.7%
68.9%
62.2%
62.2%
57.8%

80 %

Incoder (only py
Incoder (only cs
Incoder (only cpp
Gpt-j (only py
Gpt-j (only cs
Gpt-j (only cpp
CodeGen (only py
CodeGen (only cs

)
)
)
)
)
)
)
)
)
CodeGen (only cpp)

T T
40 % 60 %
Percentage of answers

0% 20 % 100 %

Fig. 5: Percentage of correct, wrong, and partially correct
answers for developers and model.

partially correct, and wrong answers for each developer and
neural model.

Answer to RQI1: The developer’s answers are correct
or partially correct in almost 70% of cases, while the
neural models under study, namely CodeGen, Gpt-j, and
InCoder, show a promising and non-trivial performance
(respectively 39.3%, 36.3%, 37.7% correct or partially
correct answers).

B. RQ2: Agreement on Visual Attention

To measure the agreement between the visual attention of
developers and the neural model, we regard them as vectors
with meaningful ordinal content and compute their Spearman
rank correlation coefficient [46], aligned with related work [].
In Figure [6] we report the Spearman rank correlation between
the developer attention vector and the model attention vector.
For completeness, we also report the comparisons among de-
velopers. Note that we only compare the attention maps of two
different subjects from the different groups (e.g. developer vs
CodeGen, developer vs GPT-J, etc.) when looking at the same
code snippet and question. Moreover, neither the data from the
participants, nor those extracted by multiple model predictions
are aggregates among subjects of the same group. Instead, we
consider the comparisons of all the possible combinations of
subjects from the two groups. We avoid aggregation because it
may be sensitive to largely deviating data of single participants
and the identification of a suitable aggregation function is a
non-trivial task, as reported by [47]. Related work [8] avoids
aggregation for similar reasons. This approach is adopted in
all the comparisons among subjects in the paper. The observed
agreement exceeds that observed in previous work [8], which
we hypothesize to be due to a combination of us using a
more advanced model [48] and a more natural data collection
setup (eye tracking vs a deblurring interface). To investigate
whether higher model-human agreement is connected to higher
effectiveness on the sensemaking task we compare agreement
of the cases where both human and model are correct and
where they are both wrong. We run a statistical t-test and

2 r—— Median: 0.23 T

3 259 --- Mean: 0.22 H

© o0l . . . f . . .
-1.00 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Corr. Developers vs Model (CodeGen) - Max

2504 — Median: 0.04 1

3 -==- Mean: 0.07 —'_l_i—‘ N

© ol . . . — . . .
-1.00 -0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Spearman Rank Corr. Developers vs Model (Gpt-j) - Max

- r—— Median: 0.20

C

3257 —-- Mean: 0.19 !

© ol . . . b ; .
-1.00 -0.75 -0.50 —=0.25 0.00 0.25 0.50 0.75 1.00
Spearman Rank Corr. Developers vs Model (InCoder) - Max

2 r—— Median: 0.53 T 1

3 251 === Mean: 0.51 H

o |

0 T T T T 1 T f T
-1.00 -0.75 -0.50 —=0.25 0.00 0.25 0.50 0.75 1.00

Spearman Rank Corr. Developers vs Developers

Fig. 6: Agreement between developers and models’ visual
attention (extraction function: max).

Model Lang-A Lang-B Stat. pval Result
Codegen cpp cs 1486.0 9.95e-07 Diff.
Gptj cpp cs 3404.0 6.61e-02 Same
Incoder cpp cs 1280.0 1.96e-08 Diff.
Codegen cpp Py 2685.0 7.22e-01 Same
Gptj cpp py 2571.0 9.37e-01 Same
Incoder cpp Py 2947.0 1.73e-01 Same
Codegen cs py 10334.0 9.29e-15 Diff.
Gptj cs py 5323.0 2.00e-02 Diff.
Incoder cs Py 10327.0 1.04e-14 Diff.

TABLE III: Results of the Mann-Whitney U statistical tests
when comparing the distributions of developer-model agree-
ment (Spearman rank coefficients) across models.

similarly to [8] we find that for InCoder the comparisons where
both human and model are correct have a higher agreement
than those where they both are incorrect (pval=2.23e-11).
We use the t-test under the assumption that the agreement
values are normally distributed, which we confirmed by visual
inspection. For the other two models, there is no statistical
significance.

Answer to RQ2: The attention of neural models trained
on code like CodeGen and InCoder exhibit a significantly
higher agreement (+0.22, +0.20) with the developers when
answering sensemaking questions as compared to GPT-j
(+0.04), which was mainly trained on natural languages
text.

C. RQ3: Programming Language Analysis

We investigate the differences in the agreement between
developers and models across programming languages. In the
lower part of Figure [5] we report the answer correctness (RQ1)
divided into groups across the three programming languages
under study: C#, C++, and Python. Since each developer has
participated in the study only using a single programming

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Hl Median B Mean
Devs vs devs 1 0.60 ——— = 0.56
Follow-up att.* 4 0.50 —:—@— 0.49
Position 4 0.49 —r——ecEOR——| 0.48
o Raw att. (1st) (sym.)* 1 0.47 ———— | 0.44
% Max att. (sym.)* 4 0.42 —1—@— 0.41
c Mean att. (sym.)*40.42 —_—eiGae—— | 0.40
§ Raw att. (last) (sym.)* 4 0.39 ——{@— 0.37
E Copy-cat40.18 —ﬂ@— 0.20
Q Raw att. (1st layer)*40.07 0.07
§ Max att.*{ 0.03 — 0.02
Rollout att.* 4 0.03 f— 0.02
Uniform 4 0.01 t 0.02
Mean att.* 4 0.03 0.02
Raw att. (last layer)* 4 0.02 b 0.01

-1.0 -0.5 0.0 0.5 1.0
Spearman Rank Corr. Coeff. Distribution

Fig. 7: Spearman Rank Correlation Developers vs Codegen
interaction matrix (* for attention-based method) .

language, the difference in answer correctness of developers
might be a result of both the programming language or the
skill and background of the specific developer. On the other
side, the neural models are equally applied to the different
languages, and thus we expect that the difference in answer
correctness is due to the specific programming language.

We compare the agreement between developers and models
across programming languages with the Mann-Whitney U
test [49] to compare two distributions. Tableillustrates that
the agreement between developers and models is significantly
higher on C# than on Python (p-value < 0.05), and marginally
significantly higher on C# than on C++ (p-value < 0.1),
making C# the language with the highest agreement between
developers and models.

Answer to RQ3: The effectiveness in answering sense-
making questions is influenced by the specific program-
ming language in which the task is formulated to the
neural model, with a gap of up to 13.3 absolute points.
Whereas, the agreement between developers’ attention and
neural models is higher for C# than for Python, and
marginally higher for C# than for C++.

D. RQ4: Agreement on Interaction Matrix

Considering CodeGen’s better answer effectiveness and
higher developer agreement, we restrict our subsequent inves-
tigation to this model.

To compute the agreement between the interaction matrices
we use a row-by-row approach, thus considering the task from
the perspective of the starting location and asking ourselves:
to which code location should I look next, given that now I am
looking at this token? As a possible target code location, we
consider the other lines in the code, thus we compare line-level
interaction matrices S7;,.. We focus on lines for two reasons:
a) because it is well-known that LLMs attend to different kinds
of tokens within a line than humans, such as punctuation or
newlines[8|], and b) because we argue that the line-level is
perhaps the most useful granularity from a hypothetical user
perspective (see Section z]) To obtain Sj;,., we take S and
sum the probabilities referring to tokens on the same line,

thus the probability to go to a line x is the probability to go
to any token of that line. To compare corresponding rows of
the ground truth interaction matrix and that derived by our
attention signal, we use both the Spearman rank correlation
coefficient or the top-3 overlap, defined as the number of
top-3 target positions shared between the ground truth row
and the model-derived row. Moreover, to balance the fact
that some potential starting tokens might be rarely (or only
very transiently) looked at by the developers, we weight each
comparison based on the total number of seconds spent by the
developer on the corresponding starting token. We also fix a
maximum for this weight to 10 sec to prevent long-observed
tokens from dominating the comparison.

We run the different extraction functions on the model
attention signal to obtain interaction matrices Sj;,., which
we compare to developer-derived ground truth. We distinguish
between: (1) attention-based code traversal predictions, which
are those introduced in Section and (2) attention-agnostic
code traversal predictions. The attention-based methods com-
prise raw attention in the first and last layer, max, and mean,
with their respective symmetric versions where the triangular
matrix is mirrored and added to replace the zero values,
the rollout, and follow-up attention. The attention-agnostic
methods comprise: copycat recommending all the positions
containing tokens identical to the starting token (e.g., starting
from token print it recommends all other lines containing
print with equal weight), uniform recommending all the posi-
tions preceding the current token, and position recommending
the neighboring positions of the current token with a Gaussian
distribution centered on the current token.

We find that attention-based methods do carry predictive
power, and in particular that follow-up attention performs
best among all methods for both Spearman rank and top-3
overlap (Figures [7] and [§). We note that a purely position-
based approach performs better than the copycat method
despite being completely content-agnostic. We attribute this to
developers’ tendency to often read source code in (piecewise)
linear order as described by [22]. Regarding raw attention, [[11]]
demonstrated deeper semantic information being concentrated
in later layers. Yet for both the triangular and symmetric
versions respectively, higher levels appear inferior at predicting
eye movement to earlier levels, possibly because such deeper
semantic information may not be apparent to developers.

Answer to RQ4: The follow-up attention function per-
forms best in predicting the next code location to look at,
with a Spearman rank correlation of +0.49 and a top-3
overlap of 47%. This outperforms the baseline prediction
accuracy of 42.3%, which uses the session history of
another developer to recommend the next line.

E. RQ5: Ablation Study

We investigate two key design choices for follow-up atten-
tion: (1) the selection of layers to use, and (2) the number of
generated tokens, i.e., observers. In the top part of Figure [9}
we report the top-3 overlap for different pairs of layers among
the 34 available in CodeGen, together with the configuration

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Size of overlap for Top-3 next lines

0 w1 2 . 3
Follow-up att.* A 53.0% 31.2% 0 13.0%m
Max att. (sym.)* 4 55.4% 027:3% 7 15.8%1
Raw att. (1st) (sym.)* 57.7% 122:8% " 16.2% m
9] Devs vs devs 57.7% 125:6%14.0%m
% Position 4 59.5% 1124:6%7113.6%0
< Max att.* 4 59.7% 29:2%10.3%
§ Raw att. (1st layer)* 60.7% 23:9%13.4%3
= Mean att. (sym.)* 63.7% ©26.5%
Qo Uniform 4 65.2% C265% 1
3 Mean att.* - 65.4% 28.5%
© Raw att. (last) (sym.)* - 65.4% 263%
Rollout att.* A 65.9% C244%
Raw att. (last layer)* A 67.0% - 26.7%
Copy-cat 1 68.1% 254% |

0% 20 % 40 % 60 % 80% 100 %

Percentage of next-line predictions

Fig. 8: Top-3 Overlap Developers vs Codegen interaction
matrix (* for attention-based method).

Size of overlap for Top-3 next lines

0 e 1 2 s 3
All layers A 53.0% e312% 0 13.0% -
Layer 32-33 4 55.3% e 3L1% e 11.4%m|
Layer 30-31 4 53.7% e e29:1% e 13.8% |
Layer 27-28 57.7% m29:8% 0 11.0%:
Y Layer 24-25 1 56.2% 30:1% 11,7 %0
2 Layer 21-22 55.9% e 3100% 11,7 %0
+ Layer 18-19 - 54.6% mmr30:3% i 12.7%m|
¢ Layer 15-16 54.6% 30:5% = 12.6%)
5 Layer 12-13 A 54.0% e 30:3% e 13.1% m|
Layer 9-10 - 52.5% re315% 0 13.1% m|
Layer 6-7 - 54.0% 320k % 11.8%m|
Layer 3-4 56.0% e 31:8% e 010.6 %40
Layer 0-1 - 49.7% m30:2% e 15.9% w|
(%)
§ 100 tokens 1 53.0% e3k2% 00 13.0%
S 50 tokens 53.4% e 31d% e 12.6%
5 10 tokens 1 54.8% mrn315% 1 1.6 %
= 0% 20 % 40 % 60 % 80 % 100 %

Percentage of next-line predictions

Fig. 9: Effect of layer pair and number of generated tokens on
top-3 overlap.

where all layers are considered on top. In the same lower
part of Figure 0] we show the top-3 overlap when restricting
the usage of the next 10, 50, or 100 generated tokens or
“followers”. There is significant agreement with the ground
truth even for smaller numbers of layers, particularly the very
first one. This suggests little processing, and maybe even only
the token embedding, might be needed to extract valuable
information. Additionally, a higher number of observers of
the follow-up has a positive impact on the agreement of the
follow-up attention with the ground truth.

Answer to RQS: The follow-up attention benefits more
from using the attention signal produced by early layers
and performance are robust to the number of generated
tokens.

VIII. THREATS TO VALIDITY

There are potential threats to validity that may limit the
generalizability of our findings. First, our sample of developers
may not represent all such developers, especially since we
recruited from one large technology company. However, we
did screen participants and require that they have professional
programming experience. Second, the tasks are sensemaking

tasks, as opposed to ecologically valid debugging or feature
enhancement tasks, involving code that participants are not
familiar with, and the participants were restricted from running
the code, using a debugger, and performing web searches.
Such tasks are commonly used in technical interviews and the
participants did not indicate the tasks were atypical. Third,
reactivity effects may occur since participants knew they were
being observed and may believe their technical ability is being
assessed. To minimize this threat, we advised participants
that their individual performance was not being reported or
analyzed and the observations were performed remotely with
the researcher not being present in the same physical room as
the participant. Fourth, it is possible that a developer’s gaze
does not always represent their attention, though such eye-
tracking data has been well-studied for decades in numerous
domains. Fifth, regarding possible model’s “cheating” due
to memorization [50]], we acknowledge the impossibility to
exclude that these programs have not been seen by the models
during training. However, we note that we evaluate them on
the performance on the sensemaking task, for which the com-
bination snippet and question is novel to the models since it
was created for this study. Regarding the attention distribution,
whether models exhibit different attention patterns on code
snippet that have been during training, as opposed to those
that are novel to them, still remains an open question for future
work. Finally, the answers generated by the neural models are
dependent on the prompts we provide, and thus results may
vary with more elaborate prompt design, which is an active
research area in prompt engineering [S1} 152} 153} 154, 155} [17]].

Generalizability. In the design of the study, we aimed to
make the evaluation as generalizable as reasonably possible
and in line with the current state of the art in the field. On
the human side, comparing our sample size to what is found
in other eye-tracking studies [56], we note that both number
of participants (25 participants vs y = 19.6, ¢ = 13.5) and
number of programs (15 programs vs p = 7.6 programs,
o = 17.2) are in line with other studies. On the contrary, most
of the current literature focuses on Java (38%) [56l], while we
have a more diverse set of programming languages (C#, C++,
and Python), possibly making our results more generalizable.
On the model side, we picked a diverse set of widely popular
models in terms of downloads on HuggingFace: CodeGen
(81K+), GPT-J (2.5M+), and InCoder (58K+). Regarding the
applicability of the follow-up attention to other models, es-
pecially closed-source ones, although current model inference
APIs do not expose attention information yet, we note that the
vast majority of closed source are transformer-based making
the extraction of attention possible in principle.

IX. DISCUSSION AND IMPLICATIONS

Generally, each part of a codebase holds myriad disparate
connections to other parts of the codebase in such forms as
documentation, calls and tests, pattern and format parallelism,
examples, data, and control flow. However, the positive mod-
erate Spearman Rank correlation among developers (+0.56)
shows that the developers tend to navigate a single file along
similar paths when trying to make sense of it with the same

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

goal, i.e. answering to the same question. To some extent,
this points to a common notion representing a relationship
of general “relevance” of one location to the other, at least
as far as we consider a single file as done in the current
study; more work is needed to generalize to larger codebases
and across files. At the same time, we also find this general
relevance relation in human understanding is reflected in the
neural processing of large transformer models of code, which
also show a remarkably promising correlation with the human
exploration paths (+0.49). Surprisingly, the follow-up attention
agrees with the ground truth on what line to look at next
even more than the developers agree with each other: 47%
vs 42.3% (Figure [8). Note that the two runner-up are still
attention based and they also outperform or match developers’
agreement: 44.6% for Max att. (Sym) and 42.3% for Raw att.
(Ist) (Sym). This shows that attention-based approaches, and
follow-up attention above all, are promising for recommending
the next code location to look at. Thus, this motivates further
work on the analysis and use of the neural attention layers as
promising way to support developers in their code exploration
tasks.

IDEs with 360° Vision. Developers spend a large part
of their time understanding existing code [57, [58]], and a
central role of advanced code editing environments is to
facilitate navigation to relevant places, whether the developers’
involvement is active (e.g., search), passive (e.g., highlighting
of identical tokens) or semi-active (e.g., jump-to-definition).
Such tools typically rely on a proxy for current developer
focus, such as mouse pointer position or the user’s cursor in
a code editor. The challenge is to find the locations relevant
to that focus location since the possible reasons for relevance
are heterogeneous and syntactical methods can only surface a
limited number of them. Nevertheless, such tools have been an
active research area [59], with results such as Strathcona [60],
Suade [61], Team Tracks [62], Navtracks [63], Mylar [64]],
PFIS [65)], Prodet [66], and Hipikat [67]. In fact, Singh et
al. evaluated various operationalizations of human attention
(i.e., cursor location, which code is visible on screen, and a
qualitative human judgment) and its impact on predictive ac-
curacy [68], though they did not include eye tracking data. The
high rate of success of follow-up attention of recommending
at least one relevant line among the top-3 (47%) shows the
effectiveness of the attention of neural in providing one such
possible proxy for relevant code locations connected to the
current statement. Further research is needed to explore how
to best incorporate such a proxy into existing tools, and how
to best use it to support developers in their code exploration
tasks, e.g. either highlight neural attended lines, offer to link
to them, or list them in a side panel.

LLMs and Human Collaboration. Although the sense-
making task spans over diverse set of topics and has mostly
open-ended questions, CodeGen, the largest LLM studied
achieves already non-trivial performance with 39.3% of correct
or partially correct answers. This is a promising result for
the use of LLMs in supporting developers when reasoning
on code, and motivates further research on perhaps more
specialized sensemaking questions directly liked to specific
traditional software engineering task, such as “Is there a bug

in this code?” for bug detection [69] [70] or “Is this code
vulnerable to SQL injection?” for vulnerability detection [71]].

Context Prioritization for LLMs. In existing tooling
employing LLMs, such as GitHub Copilot [[72]], the model can
process only limited part of the code at the same time, given
by the maximum size of the prompt it can take, also called
context window [73| 154]. In practice, heuristics are needed
to explore which parts should be included in the prompt. Our
findings show how attention-based methods exhibit a moderate
positive agreeement with human experts, especially on the top-
3 next lines (47%), thus could be used to prioritize the context
to be included in the prompt. From our ablation study, it is
encouraging to see that even with only 10 newly generated
tokens, the agreement is still higher than the agreement be-
tween developers: 45.2% vs 42.3%. These results suggest that
real-life deployment of the follow-up attention as a relevance
provider could benefit from two important optimizations to
reduce the computational cost: (1) restricting the number of
layers to consider to the first two, and (2) restricting the
number of generated tokens to consider.

X. CONCLUSION

We presented and shared a novel dataset of eye-tracking
data, comprising 92 visual attention sessions of 25 developers
when answering sensemaking questions in three popular pro-
gramming languages (Python, C++, and C#). We confirmed
that neural models provide promising but less accurate answers
than developers to these questions while paying attention
to similar parts of the code. We formalized a new code
exploration task of predicting developer code traversal and
confirmed the attention signal’s relevance for this task by
evaluating multiple processing approaches. Besides evaluating
existing approaches on the sensemaking task, we contributed
the concept of follow-up attention, which shows the best
agreement with the developer attention data.

XI. DATA AVAILABILITY

All our code is publicly available at https://github.com/
MattePalte/followup-attention. and the dataset is available

here @]

XII. ACKNOWLEDGMENTS

We thanks our colleagues at GitHub and Microsoft for
their support and feedback on this work. We also thank
the anonymous reviewers for their valuable feedback and
suggestions.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto,
J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G. Brock-
man, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf,
G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder,
M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Win-
ter, P. Tillet, F. P. Such, D. Cummings, M. Plappert,

10Raw eye tracking sessions https:/figshare.com/s/08a8b67349f18007376e
and clean version https:/figshare.com/s/c11clad03dct4e0126¢c5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/MattePalte/followup-attention
https://github.com/MattePalte/followup-attention
https://figshare.com/s/08a8b67349f18007376e
https://figshare.com/s/c11c1ad03dcf4e0126c5

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, 1. Babuschkin,
S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welin-
der, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever,
and W. Zaremba, “Evaluating Large Language Models
Trained on Code,” arXiv:2107.03374 [cs], Jul. 2021.

E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang,
Y. Zhou, S. Savarese, and C. Xiong, “A Conversational
Paradigm for Program Synthesis,” Mar. 2022.

Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrit-
twieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. D. Lago, T. Hubert, P. Choy, C. d. M. d’Autume,
I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal,
A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S.
Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu, and
O. Vinyals, “Competition-Level Code Generation with
AlphaCode,” arXiv:2203.07814 [cs], Feb. 2022.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine
Translation by Jointly Learning to Align and Translate,”
in 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds., 2015.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “At-
tention is All you Need,” Advances in Neural Information
Processing Systems, vol. 30, pp. 5998-6008, 2017.

Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang,
B. Zhou, and Y. Bengio, “A Structured Self-Attentive
Sentence Embedding,” in International Conference on
Learning Representations, Jul. 2017.

S. Vashishth, S. Upadhyay, G. S. Tomar, and M. Faruqui,
“Attention Interpretability Across NLP Tasks,” Sep.
2019.

M. Paltenghi and M. Pradel, “Thinking Like a Devel-
oper? Comparing the Attention of Humans with Neural
Models of Code,” in 2021 36th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
Nov. 2021, pp. 867-879.

Y. Wan, W. Zhao, H. Zhang, Y. Sui, G. Xu, and H. Jin,
“What do they capture? a structural analysis of pre-
trained language models for source code,” in Proceed-
ings of the 44th International Conference on Software
Engineering, ser. ICSE ’22. New York, NY, USA:
Association for Computing Machinery, May 2022, pp.
2377-2388.

J. Vig and Y. Belinkov, “Analyzing the Structure of At-
tention in a Transformer Language Model,” in Proceed-
ings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP. Florence,
Italy: Association for Computational Linguistics, Aug.
2019, pp. 63-76.

K. Zhang, G. Li, and Z. Jin, “What does Transformer
learn about source code?” Jul. 2022.

M. Allamanis, M. Brockschmidt, and M. Khademi,
“Learning to Represent Programs with Graphs,” in 6th

[24]

[25]

International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net,
2018.

T. Yuan, X. Li, H. Xiong, H. Cao, and D. Dou, “Ex-
plaining Information Flow Inside Vision Transformers
Using Markov Chain,” in eXplainable AI Approaches for
Debugging and Diagnosis., Oct. 2021.

H. Chefer, S. Gur, and L. Wolf, “Transformer Inter-
pretability Beyond Attention Visualization,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2021, pp. 782-791.

G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and
K.-R. Miiller, “Layer-Wise Relevance Propagation: An
Overview,” in Explainable Al: Interpreting, Explaining
and Visualizing Deep Learning, ser. Lecture Notes in
Computer Science, W. Samek, G. Montavon, A. Vedaldi,
L. K. Hansen, and K.-R. Miiller, Eds. Cham: Springer
International Publishing, 2019, pp. 193-209.

R. Bednarik, T. Busjahn, A. Gibaldi, A. Abhadi,
M. Bielikova, M. Crosby, K. Essig, F. Fagerholm,
A. Jbara, R. Lister, P. Orlov, J. Paterson, B. Sharif,
T. Sirkid, J. Stelovsky, J. Tvarozek, H. Vrzakova, and
I. van der Linde, “EMIP: The eye movements in pro-
gramming dataset,” Science of Computer Programming,
vol. 198, p. 102520, Oct. 2020.

P. Bareif3, B. Souza, M. d’Amorim, and M. Pradel, “Code
Generation Tools (Almost) for Free? A Study of Few-
Shot, Pre-Trained Language Models on Code,” Jun. 2022.
T. Ahmed and P. Devanbu, “Few-shot training LLMs for
project-specific code-summarization,” in Proceedings of
the 37th IEEE/ACM International Conference on Auto-
mated Software Engineering, ser. ASE *22. New York,
NY, USA: Association for Computing Machinery, Jan.
2023, pp. 1-5.

C. S. Xia and L. Zhang, “Less training, more repairing
please: Revisiting automated program repair via zero-
shot learning,” ser. ESEC/FSE 2022, Nov. 2022.

D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wal-
lace, F. Shi, R. Zhong, W.-t. Yih, L. Zettlemoyer, and
M. Lewis, “InCoder: A Generative Model for Code
Infilling and Synthesis,” Apr. 2022.

B. Wang and A. Komatsuzaki, “GPT-J-6B: A 6 billion
parameter autoregressive language model,” May 2021.
T. Blascheck and B. Sharif, “Visually analyzing eye
movements on natural language texts and source code
snippets,” in Proceedings of the 11th ACM Symposium
on Eye Tracking Research & Applications, ser. ETRA
’19. New York, NY, USA: Association for Computing
Machinery, Jun. 2019, pp. 1-9.

T. Busjahn, R. Bednarik, A. Begel, M. Crosby, J. H.
Paterson, C. Schulte, B. Sharif, and S. Tamm, “Eye
Movements in Code Reading: Relaxing the Linear Or-
der,” in 2015 IEEE 23rd International Conference on
Program Comprehension, May 2015, pp. 255-265.

S. Jain and B. C. Wallace, “Attention is not Explanation,”
arXiv:1902.10186 [cs], May 2019.

S. Wiegreffe and Y. Pinter, “Attention is not not Expla-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

nation,” arXiv:1908.04626 [cs], Sep. 2019.

M. Tutek and J. Snajder, “Staying True to Your Word:
(How) Can Attention Become Explanation?” May 2020.
M. R. L. Rabin, V. J. Hellendoorn, and M. A. Alipour,
“Understanding neural code intelligence through program
simplification,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, Aug. 2021, pp.
441-452.

O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer Net-
works,” Advances in Neural Information Processing Sys-
tems, vol. 28, 2015.

R. Turner, M. Falcone, B. Sharif, and A. Lazar, “An eye-
tracking study assessing the comprehension of c++ and
Python source code,” in Proceedings of the Symposium
on Eye Tracking Research and Applications. Safety
Harbor Florida: ACM, Mar. 2014, pp. 231-234.

T. Beelders, “Eye-tracking analysis of source code read-
ing on a line-by-line basis,” in 2022 IEEE/ACM 10th
International Workshop on Eye Movements in Program-
ming (EMIP), May 2022, pp. 1-7.

Z. Sharafi, I. Bertram, M. Flanagan, and W. Weimer,
“Eyes on Code: A Study on Developers’ Code Navi-
gation Strategies,” IEEE Transactions on Software Engi-
neering, vol. 48, no. 5, pp. 1692-1704, May 2022.

D. T. Guarnera, C. A. Bryant, A. Mishra, J. I. Maletic,
and B. Sharif, “iTrace: Eye tracking infrastructure for
development environments,” in Proceedings of the 2018
ACM Symposium on Eye Tracking Research & Applica-
tions, ser. ETRA ’18. New York, NY, USA: Association
for Computing Machinery, Jun. 2018, pp. 1-3.

S. Fakhoury, D. Roy, H. Pines, T. Cleveland, C. S. Pe-
terson, V. Arnaoudova, B. Sharif, and J. Maletic, “Gazel:
Supporting Source Code Edits in Eye-Tracking Studies,”
in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), May 2021, pp. 69-72.

M. Behroozi, C. Parnin, and T. Barik, “Hiring is broken:
What do developers say about technical interviews?” in
2019 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 1EEE, 2019, pp. 1-9.
A. J. Ko, R. DeLine, and G. Venolia, “Information
Needs in Collocated Software Development Teams,” in
Proceedings of the 29th International Conference on
Software Engineering, ser. ICSE ’07. USA: IEEE
Computer Society, May 2007, pp. 344-353.

T. D. LaToza and B. A. Myers, “Developers ask reacha-
bility questions,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Vol-
ume 1, ser. ICSE "10. New York, NY, USA: Association
for Computing Machinery, May 2010, pp. 185-194.

M. Wyrich, J. Bogner, and S. Wagner, “40 Years of De-
signing Code Comprehension Experiments: A Systematic
Mapping Study,” ACM Computing Surveys, vol. 56, no. 4,
pp. 106:1-106:42, Nov. 2023.

T. M. Shaft and I. Vessey, “The Relevance of Application

[42]

[43]

[44]

[49]

Domain Knowledge: The Case of Computer Program
Comprehension,” Information Systems Research, vol. 6,
no. 3, pp. 286-299, 1995.

A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever, “Improving Language Understanding
by Generative Pre-Training,” p. 12.

S. Abnar and W. Zuidema, “Quantifying Attention Flow
in Transformers,” in ACL 2020. Online: Association for
Computational Linguistics, Jul. 2020, pp. 4190-4197.
G. Brunner, Y. Liu, D. Pascual, O. Richter, M. Ciaramita,
and R. Wattenhofer, “On Identifiability in Transformers,”
ICLR, 2020.

E. R. Schotter, B. Angele, and K. Rayner, “Parafoveal
processing in reading,” Attention, Perception, & Psy-
chophysics, vol. 74, no. 1, pp. 5-35, Jan. 2012.

Virtual Environments and Advanced Interface Design.
Oxford University Press, Jul. 1995.

R. Sennrich, B. Haddow, and A. Birch, “Neural Machine
Translation of Rare Words with Subword Units,” in Pro-
ceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers).
Berlin, Germany: Association for Computational Lin-
guistics, Aug. 2016, pp. 1715-1725.

M. L. McHugh, “Interrater reliability: The kappa statis-
tic,” Biochemia Medica, vol. 22, no. 3, pp. 276-282, Oct.
2012.

C. Spearman, “The Proof and Measurement of Associ-
ation between Two Things,” The American Journal of
Psychology, vol. 100, no. 3/4, pp. 441-471, 1987.

J. Siegmund, N. Peitek, S. Apel, and N. Siegmund,
“Mastering Variation in Human Studies: The Role of Ag-
gregation,” ACM Transactions on Software Engineering
and Methodology, vol. 30, no. 1, pp. 2:1-2:40, Dec. 2021.
W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
Transformer-based Approach for Source Code Summa-
rization,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp.
4998-5007.

H. B. Mann and D. R. Whitney, “On a Test of Whether
one of Two Random Variables is Stochastically Larger
than the Other,” The Annals of Mathematical Statistics,
vol. 18, no. 1, pp. 50-60, Mar. 1947.

Z. Yang, Z. Zhao, C. Wang, J. Shi, D. Kim, D. Han, and
D. Lo, “Unveiling Memorization in Code Models,” Jan.
2024.

J. A. Prenner and R. Robbes, “Automatic Program
Repair with OpenAI’s Codex: Evaluating QuixBugs,”
arXiv:2111.03922 [cs], Nov. 2021.

S. Abukhalaf, M. Hamdaqga, and F. Khomh, “On Codex
Prompt Engineering for OCL Generation: An Empirical
Study,” Mar. 2023.

J. Cao, M. Li, M. Wen, and S.-c. Cheung, “A study on
Prompt Design, Advantages and Limitations of ChatGPT
for Deep Learning Program Repair,” Apr. 2023.

D. Shrivastava, H. Larochelle, and D. Tarlow,
“Repository-Level Prompt Generation for Large
Language Models of Code,” Oct. 2022.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

L. Reynolds and K. McDonell, “Prompt Programming
for Large Language Models: Beyond the Few-Shot
Paradigm,” in Extended Abstracts of the 2021 CHI Con-
ference on Human Factors in Computing Systems, ser.
CHI EA ’21. New York, NY, USA: Association for
Computing Machinery, May 2021, pp. 1-7.

U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A
Survey on the Usage of Eye-Tracking in Computer
Programming,” ACM Computing Surveys, vol. 51, no. 1,
pp- 5:1-5:58, Jan. 2018.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung, “An exploratory study of how developers seek,
relate, and collect relevant information during software
maintenance tasks,” IEEE Transactions on Software En-
gineering, vol. 32, no. 12, pp. 971-987, 2006.

D. Piorkowski, A. Z. Henley, T. Nabi, S. D.
Fleming, C. Scaffidi, and M. Burnett, “Foraging
and navigations, fundamentally: Developers’ predictions
of value and cost,” in Proceedings of the 2016
24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE 2016.
New York, NY, USA: Association for Computing
Machinery, 2016, p. 97-108. [Online]. Available:
https://doi.org/10.1145/2950290.2950302

M. Robillard, R. Walker, and T. Zimmermann, “Rec-
ommendation systems for software engineering,” IEEE
Software, vol. 27, no. 4, pp. 80-86, July 2010.

R. Holmes and G. C. Murphy, “Using structural context
to recommend source code examples,” in Proceedings.
27th International Conference on Software Engineering,
2005. ICSE 2005., May 2005, pp. 117-125.

F. W. Warr and M. P. Robillard, “Suade: Topology-based
searches for software investigation,” in Proc. ICSE, 2007,
pp. 780-783.

R. DeLine, M. Czerwinski, and G. Robertson, “Easing
program comprehension by sharing navigation data,” in
Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing, ser. VL/HCC
’05. Washington, DC, USA: IEEE Computer Society,
2005, pp. 241-248.

J. Singer, R. Elves, and M.-A. Storey, ‘“NavTracks:
Supporting navigation in software maintenance,” in Pro-
ceedings of the 21st IEEE International Conference on
Software Maintenance, ser. ICSM *05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 325-334.

M. Kersten and G. C. Murphy, “Mylar: a degree-of-
interest model for ides,” in Proc. 4th Int’l Conf. Aspect-
oriented Software Development (AOSD). ACM, 2005,
pp. 159-168.

D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart,
M. Burnett, B. John, R. Bellamy, and C. Swart, “Reac-
tive information foraging: An empirical investigation of
theory-based recommender systems for programmers,” in
Proc. ACM SIGCHI Conf. Human Factors in Computing
Systems, ser. CHI "12. New York, NY, USA: ACM,
2012, pp. 1471-1480.

[66] V. Augustine, P. Francis, X. Qu, D. Shepherd, W. Snipes,

C. Braunlich, and T. Fritz, “A field study on fostering
structural navigation with prodet,” in 2015 IEEE/ACM

37th IEEE International Conference on Software Engi-
neering, vol. 2, May 2015, pp. 229-238.

[67] D. Cubrani¢ and G. C. Murphy, “Hipikat: Recommend-
ing pertinent software development artifacts,” in Proc.
25th Int’l Conf. on Software Engineering (ICSE '03),
2003, pp. 408-418.

[68] A. Singh, A. Z. Henley, S. D. Fleming, and M. V.
Luong, “An empirical evaluation of models of program-
mer navigation,” in IEEE Int’l Conference on Software
Maintenance and Evolution, ser. ICSME 16, 2016, pp.
9-19.

[69] M. Pradel and K. Sen, “DeepBugs: A learning approach
to name-based bug detection,” Proceedings of the ACM
on Programming Languages, vol. 2, no. OOPSLA, pp.
147:1-147:25, Oct. 2018.

[70] A. Habib and M. Pradel, “Neural Bug Finding: A Study
of Opportunities and Challenges,” Jun. 2019.

[71] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray,
“Deep Learning Based Vulnerability Detection: Are We
There Yet?” IEEE Transactions on Software Engineering,
vol. 48, no. 9, pp. 3280-3296, Sep. 2022.

[72] “GitHub Copilot - Your AI pair programmer,’
https://github.com/features/copilot.

[73] A. Z. Edward Aftandilian, “Crafting code suggestions
using large language models,” 2023, dagstuhl Seminar
on Programming Language Processing. [Online].
Available: https://docs.google.com/presentation/d/
IMmTaKUOXu7fL6hIjbLvIJ IWIVM3Wy16rQVZ6ZBB0ODzY/
edit#slide=id.g11be0998ab6_0_94

Matteo Paltenghi is a doctoral researcher at the
University of Stuttgart with expertise at the intersec-
tion of artificial intelligence and software engineer-
ing, advised by Prof. Dr. sc. Michael Pradel. Beside
his Ph.D., he also worked as research scientist at
GitHub Next and CERN. He is an active member of
the software engineering community where he serves
as reviewer (TSE, TOSEM, JSSoftware), and his
work was also presented at top conferences like ASE
21, OOPSLA 22, ICSE 23 and ICSE 24. Matteo
holds a double degree M.Sc. in Computer Science
and Engineering from Politecnico di Milano and TU Berlin. Recently, he was
selected as young researchers for participation in the Heidelberg Laureate
Forum (HLF 23). For more information, visit jhttps://matteopaltenghi.com.

Rahul Pandita is staff researcher at GitHub Inc.
where he works on automated software engineer-
ing at with focus on devloper tools and developer
productivity. He was previously a Senior Researcher
at Phase Change Software where he developed a
virual assistant ‘MIA’ to help COBOL developers
comprehend legacy mainframe systems. He received
his Ph.D. of Computer Science from North Carolina
State University in 2015. For more information visit
http://rahulpandita.me/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://doi.org/10.1145/2950290.2950302
https://docs.google.com/presentation/d/1MmTaKUOXu7fL6hIjbLvIJ1WIVM3Wy16rQVZ6ZBB0DzY/edit#slide=id.g11be0998ab6_0_94
https://docs.google.com/presentation/d/1MmTaKUOXu7fL6hIjbLvIJ1WIVM3Wy16rQVZ6ZBB0DzY/edit#slide=id.g11be0998ab6_0_94
https://docs.google.com/presentation/d/1MmTaKUOXu7fL6hIjbLvIJ1WIVM3Wy16rQVZ6ZBB0DzY/edit#slide=id.g11be0998ab6_0_94
https://matteopaltenghi.com
http://rahulpandita.me/

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3445338

Austin Z. Henley is a Senior Researcher at Mi-
crosoft where he works on the human factors of
Al-powered developer tools. Previously, he was a
tenure-track professor at the University of Tennessee
where he led an NSF-funded lab researching devel-
oper productivity and taught software engineering
courses. He received his Ph.D. in Computer Science
from the University of Memphis in 2018. For more
information, visit http://austinhenley.com/,

Albert Ziegler is a Principal Researcher at GitHub
Next where he works on Artificial Intelligence for
the Software Development Lifecycle. He was one of
the three original inventors of GitHub Copilot and
has since turned to LLM guided tooling in both in
the IDE (Copilot NES, Copilot Radar) and the pull
request workflow (AI for Pull Requests, Gentest).
He holds a PhD in Mathematics from Leeds
University and has previously worked on developer
productivity and diverse industry ML projects.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

http://austinhenley.com/

	Introduction
	Related Work
	Sensemaking Task
	Problem Formulation
	Views of Attention

	Extraction Functions
	Attention Extraction Overview
	Visual Attention Vector Extraction
	Interaction Matrix Extraction

	Code Exploration Dataset
	Eye Tracking Setup
	Ground Truth Visual Attention
	Ground Truth Interaction Matrix

	Results
	RQ1: Answer Correctness
	RQ2: Agreement on Visual Attention
	RQ3: Programming Language Analysis
	RQ4: Agreement on Interaction Matrix
	RQ5: Ablation Study

	Threats to Validity
	Discussion and Implications
	Conclusion
	Data Availability
	Acknowledgments
	Biographies
	Matteo Paltenghi
	Rahul Pandita
	Austin Z. Henley
	Albert Ziegler

