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Abstract—A race is underway to embed advanced AI capabil-
ities into products. These product “copilots” enable users to ask
questions in natural language and receive relevant responses that
are specific to the user’s context. In fact, virtually every large
technology company is looking to add these capabilities to their
software products. However, for most software engineers, this is
often their first encounter with integrating AI-powered technol-
ogy. Furthermore, software engineering processes and tools have
not caught up with the challenges and scale involved with building
AI-powered applications. In this work, we present the findings
of an interview study with 26 professional software engineers
responsible for building product copilots at various companies.
From our interviews, we found pain points at every step of
the engineering process and the challenges that strained existing
development practices. We then conducted group brainstorming
sessions to collaborative on opportunities and tool designs for the
broader software engineering community.

Index Terms—AI, large-language models, intelligent applica-
tions, pain points

I. INTRODUCTION

A race has been underway to embed advanced AI ca-
pabilities into products and line of business. Often, these
come in the form of a conversational agent powered by
large-language models (LLMs) and assist a user as a copilot
in performing their tasks. For example, Salesforce recently
announced Einstein Copilot, which will “assist users within
their flow of work, enabling them to ask questions in natural
language and receive relevant and trustworthy answers that
are grounded in secure proprietary company data from Data
Cloud.1.” Virtually every large technology company is looking
to add similar capabilities to their software products.

However, for most professional software engineers, this
is often their first encounter with using and integrating AI-
powered technology as a primary mode of user interaction.
Previously, most AI/ML technological was never surfaced to
a user, acting invisibly in the software, such as as a filter for
removing toxic comments, or an algorithm for recommending
related videos. And unlike, previous iterations of AI/ML, the
tools, techniques, and models required specialized knowledge
and training in order the build and operate. With the emergency
of LLMs, the barriers of entry have been lowered, meaning
anyone is a prompt away from interacting with an AI system.

1https://www.salesforce.com/news/press-releases/2023/09/12/
salesforce-platform-news-dreamforce/

Unfortunately, while wide-scale AI build out continues,
early indications are not entirely positive. For example, one
CIO canceled a large Copilot subscription, likening it to creat-
ing “middle-school presentations”, and concluding, “We really
just do not see the value we’re getting out of those tools.” [1]
Furthermore, additional concerns, such as harmful outputs and
responsible AI [2], [3], [4], bias, and discrimination [5], [6]
continue to mount.

In this paper, we present the findings of an interview
study with 26 professional software engineers responsible for
building product copilots at various companies. From our in-
terviews, we found pain points at every step of the engineering
process and the challenges that strained existing development
practices. In particular, prompt engineering and testing are
extremely time-consuming and resource-constrained. Software
engineers also struggle to understanding user intentions, man-
aging application context, coordinating which code and/or
teams handled certain specialized interactions with users,
and providing safety guardrails. Software engineers desire
comprehensive tooling and best practices, which are yet to be
defined. We then conducted group brainstorming sessions to
collaboratively review possible opportunities and tool designs
to address these challenges.

II. BACKGROUND

A. Language Models
In its simplest form, a language model is a statistical model

that captures the probability distribution over sequences of
words in a given language. It aims to understand and generate
coherent textual sequences by modeling the relationships and
dependencies between words. Language models can predict
the next word in a sentence based on the context of the
preceding words or generate entirely new text that follows
the patterns and characteristics of the training data. These
models have gained significant attention in natural language
processing (NLP) tasks due to their ability to comprehend
and generate text, enabling advancements in machine trans-
lation, text summarization, question-answering systems, and
sentiment analysis.

Large-language models (LLMs) such as GPT-42, Claude3,
and LLaMA4 are a class of language models typically char-

2https://openai.com/research/gpt-4
3https://claude.ai/
4https://ai.meta.com/blog/large-language-model-llama-meta-ai/



(a) GitHub Copilot (b) Microsoft Windows Copilot (c) Google Codey in Project IDX

(d) Microsoft 365 Copilot (e) Midjourney

Fig. 1: A sampling of copilot product screenshots. (a) GitHub Copilot, an AI coding assistant in VS Code. (b) Windows Copilot,
for accelerating everyday computing tasks. (c) Google Codey, an AI coding assistant in Project IDX, a cloud-based code editor.
(d) Microsoft 365 Copilot, an assistant for Microsoft Office products, such as Excel. (e) Midjourney, a text-to-image AI service.

acterized by their large sizes, determined by the number
of parameters (typically at least one billion) they contain.
Parameters are the learnable elements in a model that allow
it to capture and represent complex patterns and relationships
within the data. The size of a model directly impacts both
the training cost and the computational resources required for
inference. Larger models with more parameters generally re-
quire more computation and time to train effectively. Similarly,
the operational cost of using larger models for inference is
higher due to the increased computational requirements during
execution. As a result, practitioners have recently been explor-
ing smaller-scale models and fine-tuning existing models to
balance performance and resource efficiency, reducing both the
training and operational costs associated with larger models.
This allows for more practical and cost-effective deployment
of language models in software engineering tasks.

As more of these models become available to the devel-
opers, we see an increasing trend of integrating the output
of these models into software applications. That, in turn, will
only increase the challenges and frustrations of using these
models effectively. Thus, there is a need to have guidelines
and lessons learned for the developers to use these models to
build usable and reliable experiences.

B. “Copilot”

Ever since the introduction of GitHub Copilot 5, the term
“copilot” has gained popularity in the software engineering
community as a way to describe software systems that leverage
LLMs to assist users in various tasks. In this paper, we use the
term “copilot” to generally refer to any software system that 1)
translates the user actions (textual input or GUI interactions)
as prompts for an LLM and 2) transforms the output of the

5https://github.com/features/copilot

LLMs into a suitable format for user interaction, rather than
displaying the raw text output.

Figure 1 illustrates some examples of copilot systems.
Figure 1-a and c show GitHub Copilot and Google Project
IDX 6, which generate structured code from natural language
descriptions or code snippets and integrate it into the user’s
IDE. Figure 1-b shows Windows Copilot 7, which allows users
to perform arbitrary actions in the Windows operating system
by using natural language commands or queries. Figure 1-d
shows Microsoft 365 Copilot 8 in Excel, which helps users
with data wrangling operations by using natural language
instructions or suggestions. Finally, Figure 1-e shows Midjour-
ney9, a Discord bot that transforms user prompts into images
and allows users to generate further variations of the image
by clicking buttons in the user interface.

III. METHODOLOGY

To understand challenges of software engineers, we con-
ducted a mixed-methods study involving semi-structured in-
terviews as well as structured brainstorming sessions. We per-
formed semi-structured interviews with 26 software engineers
who are actively engaged in building a product’s copilot. We
then performed two structured brainstorming sessions with
small groups of software engineers to conceptualize potential
solutions.

A. Participants

We recruited software engineers through two mechanisms.
First, we recruited 14 software engineers internally at Mi-

6https://idx.dev/
7https://blogs.windows.com/windowsdeveloper/2023/05/23/

bringing-the-power-of-ai-to-windows-11-unlocking-a-new-era-of-productivity-for-customers-and-developers-with-windows-copilot-and-dev-home/
8https://blogs.microsoft.com/blog/2023/03/16/

introducing-microsoft-365-copilot-your-copilot-for-work/
9https://www.midjourney.com/



crosoft who were known to be working on publicly announced
Copilot products and then snowball-sampled additional partic-
ipants. Second, to gain a broader perspective, we recruited 12
software engineers from a variety of companies and domains
using a recruiting platform, UserInterviews.com. We used a
20-question survey to include or exclude participants. In par-
ticular, we wanted to exclude engineers who are only using AI,
such as GitHub Copilot or ChatGPT, rather than integrating
it into a product. We also wanted to exclude those with
extensive data science or machine learning backgrounds to be
representative of the general software engineering population.
Additionally, we required that they be primarily focused on AI-
related features and products (i.e., spending at least 20 hours of
their work week). For the brainstorming sessions, we recruited
from the internal software engineers that we had individually
interviewed already. We limited the brainstorming sessions to
the first five participants to sign up for both sessions, which
resulted in 3 participants in the first session and 4 in the second
session.

B. Procedure

1) Interviews: Each interview session consisted of one
software engineer and two researchers. We began each inter-
view with a brief overview of the discussion topics and then
requested consent to record audio and video. We then followed
a discussion guide for 45 minutes while asking follow-ups
based on the participants’ responses. The primary categories
of questions include background on their projects, motivation
for integrating AI, the major tasks to build a copilot for
their product, prompt engineering, testing, tooling, pain points,
where they are learning these skills, and concerns with AI. The
last portion of the session involved showing the participants a
workflow diagram of building a copilot (see Fig. 2) and getting
their feedback on it, which we adjusted after each session.

2) Structured Brainstorming: The structured brainstorming
sessions consisted of 4 timeboxed activities over the course of
75 minutes, led by a third-party facilitator. We used a popular
collaboration software, Mural, to enable all participants to add
notes to a large canvas while everyone also communicated over
video chat. First, everyone was introduced to the goal of the
session, introduced to one another, and given a brief overview
of the findings from the initial interviews. Second, participants
were asked to add notes to the board regarding what problems
they believe exist with building copilots based on their own
experience and the results we shared. They then read everyone
else’s and added “thumbs up” icons to all of the ones that
they agreed with. Third, they took a problem statement from
the previous step and expanded on the problem with reasons
why they believe it is a problem, as well as potential solutions.
Fig. 3 shows an example of one problem statement board from
the first brainstorming session. This was collaborative, and
participants were encouraged to contribute to anyone’s ideas,
not just their own.

C. Analysis

Our analysis of the interview transcripts involved thematic
analysis between two researchers, systematically identifying
and analyzing patterns or themes within the data. This method
allowed us to delve into the intricacies of participants’ experi-
ences, capturing the nuances of their challenges, motivations,
and perspectives. After the interviews, the brainstorming ses-
sions facilitated a collaborative environment on collaborative
Mural boards. These primarily revolved around delineating
identified problems, surfacing underlying assumptions, brain-
storming potential solutions, and recognizing inherent limita-
tions. The combined approach ensured a comprehensive un-
derstanding of the complexities involved in building Copilots
across domains.

IV. FINDINGS

We present our findings, summarized in Table I.

A. Prompt Engineering

Prompt engineering was unlike any typical software engi-
neering processes participants were familiar with: “It’s more of
an art than a science,” says P4. In particular, participants were
caught off guard by the unpredictable nature of the models, P7
explains, “because these large language models are often very,
very fragile in terms of responses, there’s a lot of behavior,
control, and steering that you do through prompting”. Never-
theless, participants felt these models unlocked “superpowers”,
allowing them to work on scenarios that were not previously
within their reach.

1) Time-consuming process of trial and error.: Most par-
ticipants started writing prompts and evaluating their outputs
in ad hoc environments, such as playgrounds provided by
OpenAI10. For P14, “the playground is my default. There’s
a million of them, I use whichever one is not overloaded.
I bounce between them.” Participants also emphasized the
transient and ephemeral nature of prompt creation. P1 tried
“just playing around with prompts, and move around and try
not to break things.” P12 adds, “Early days, we just wrote
a bunch of crap to see if it worked”. However, participants
found this process “turning into a headache” (P8), because
their prompt engineering efforts had to “accommodate for all
these corner cases and thinking about, like all the differences in
physical and contextual attributes that need to flow smoothly
into a prompt”. P12 concludes, “Experimenting is the most
time-consuming if you don’t have the right tools. We need to
build better tools”.

2) Attempts at wrangling prompt output: Once a participant
created a prompt that produced a reasonable result, they
needed a machine-readable output or method to systematically
parse the resulting text for use in the product. Unfortunately,
participants very quickly discovered they needed “a consid-
erable amount of iteration again” (P15) or even revisit their
entire approach.

10https://platform.openai.com/playground



Fig. 2: The high-level workflow of building a copilot that we iteratively developed from the interviews. We showed a version
to each participant and made changes based on their feedback.

For example, a common tactic was to “give it a JSON
schema of appropriate responses that it could respond with”,
explains (P20), “and sometimes this works, but often, but it
also introduces a bunch of other issues”. But then reality sets
in, P12 laments, “Then we realized there are a million ways
you can effect it.” Sometimes, this could be simple formatting
issues, “oh God, it’s stuck with the quoted string.” (P9). Other
times, (P20) elaborates, “It would make up objects that didn’t
conform to that JSON schema, and we’d have to figure out
what to do with that, or it would hallucinate stop tokens that
we hadn’t told it about as part of the response that it gave us.”

But soon, participants learned more effective tactics to get
consistent behaviors from the models. P12 explains how they
benefited from using more human-readable formats, such as
markdown: “Then we got access to real product stuff. They use
markdown. The model benefits from being formatted: Head-
ing, bullet points, tons of research papers on how they figured
it out.” Similarly, P20 found that their scenario benefited from
a shift in approach: “We ask the model to give us a project
structure. We spent a bunch of time trying to get the model
to essentially generate an array of objects that represented
the files and folders in the file tree.” However, they noticed
that whenever you ask a model for file structure, the natural
response was more likely to be a “a markdown block for the
with an ASCII tree.” As a result, “what we shipped today is
we literally just parse the ASCII”. In conclusion, they realized
that “if the model is kind of inherently predisposed to respond
with a certain type of data, we don’t try to force it to give
us something else because that seems to yield a higher error
rate.”

3) Balance more context with using fewer tokens: When
users interact with a product copilot, they commonly provide
phrases, such as “refactor this code” or “add borders to the ta-
ble”. The referential nature of these phrases required strategies
to help a product copilot properly understand the context of a
user’s task and environment. P4 emphasizes the significance of

“giving the system the right context.” [7] However, it became
quickly clear that providing the right context was not going
to be an easy task: P3 describes the challenge of distilling
“a really large dataset” and “squishing more information
about the data frame into a smaller string.” For others, such
as P20, they had to constantly juggle what to “selectively
truncate because it won’t all fit into the prompt, for example,
like the conversation history becoming too long”. This was
compounded by having difficulty in testing the impact different
parts of the prompt had on the overall performance of the task.

4) Managing and tracking prompt assets: Once participants
managed to create prompts that could consistently produce
reliable output, other challenges started to emerge. A common
realization was that it was “a mistake doing too much with one
prompt.” (P15). Instead, prompts needed to be broken down
into examples, instructions/rules, templates, and other assets,
and as a result, P8 explains, “So we end up with a library of
prompts and things like that.”

Breaking down prompts into components had several ad-
vantages, including the ability to include dynamic examples
or rules. In practice, these components “gets populated and
modified before the final query” (P15), even including auto-
mated rewrites of the user prompt by the model [8]. But this
started to bring in a different set of challenges. First, it became
difficult to “inspecting that final prompt”, and required ”going
through the logs and mapping the actual prompt back to the
original template and each dynamic step made”. Second, while
participants keep prompt assets in version control, there is
no other system in place to continuously validate and track
performance over time. This was especially difficult when
evaluating the impact of tweaks to prompts or different models.

B. Orchestration

For many product copilots, to perform any action in the
product or gather relevant information about the task and



Fig. 3: One example artifact from a brainstorming session. For
this portion of the session, participants expanded on a specific
problem, what is stopping users from overcoming the problem,
and possible solutions. Later, the participants expanded the
solution ideas.

product, considerable orchestration and evaluation of multiple
prompts were necessary.

1) Intent detection and routing workflows.: For several
participants building a copilot, the initial scope of work
involved supporting single-turn interactions, where the user
would provide a query or command, and the copilot would
provide a response.

Often, the first step was to perform intent detection. P20
explains, “Meaning, for example, whatever you type in your
chat saying something like refactor this, we first tried to
send that we first send that query to the copilot and ask
like what kind of intent does the user have for this specific
query out of intents that we redefine and provide”. Once an

intent is detected, the prompt is then routed to the appropriate
skill, “like adding a test or generating documentation,” that is
capable of handling the request. After the model returned a
response for the prompt, additional processing was necessary
in order to interpret the response. For example, when receiving
a code snippet, “we need to know whether we need to update
the current selection or just insert something below.”

2) Limitations in commanding: Unfortunately, command-
ing was relatively limited for many copilots. “It seems like
a logical step to go from, you know, copilot chat saying...
Here’s how you would set this up... to actually setting that up
for the user rather than the user having to go and stand up
that folder by themselves,” continues P20, “now, of course,
it’s dangerous to let copilot chat just do stuff for you without
your intervention... this content is AI generated, and you know
you should review all of it before you decide to do anything
further.”

3) Planning and multi-turn workflows.: Unfortunately, for
copilots that used an intent or skill routing-based architecture,
longer conversations or simple follow-up questions were often
not possible. This was due to the prompt and context being
automatically populated by the instructions from routed skills
and automatically injected context, which disrupted the natural
flow of conversation.

P7 describes an alternative approach used by several of our
participants: “There’s another approach that’s called agent-
based, where similar researchers starting to kind of think of
these LLM tooling act like a more like an agent, you know,
this is an environment, and I need to go through some internal
observations and thinking.” However, P7 also pointed out that
while ”more powerful”, the trade-off is that “the behavior is
really hard to manage and steer”. Similarly, P18 was able to
build a planning system that allowed other engineers to build
“semantic functions that could be woven together by a simple
plan language”.

4) Looping and going off-track.: When using more ad-
vanced model behavior approaches, participants, such as P9
noticed “that it’s easy for these things to get stuck in loops
or to go really far off track.” Furthermore, the models had
difficulty in accurately recognizing when it had completed a
task, “Because in many cases, I found that it thinks it’s done,
but it’s not done.” P2 recalls a user experience session where
the model “completely lost the script” when the model mistook
the user’s prompt as thinking they had finished a step and had
“gone off the rails”. Participants pointed out the need for being
able to get better visibility into the internal reasoning states
of agents, tracking multi-step tasks, and instilling stronger
guardrails on agent behavior.

C. Testing and Benchmarks

Software engineers naturally gravitated to classical software
engineering methods, such as unit testing, when evaluating
LLMs. However, they were soon met with many challenges.

1) Every test is a flaky test: Normally when unit testing,
a software engineer can create a test case that performs a
small function with assertions that verify the result is correct.



TABLE I: Themes—challenges when building product copilots.

THEME DESCRIPTION REPRESENTATIVE EXAMPLES

Challenges in Interaction with LLMs

Prompt Engineering Navigating a fragile and time-consuming process of
”trial and error” in prompt creation. The need for
reactionary modifications to LLM outputs for proper
structuring and content.

“Because these large language models are often very, very fragile...”
“A little tough because it’s not like it’s returned like a structured
format...”

Orchestration Challenges in creating advanced workflows and
steering and managing complex state and unpre-
dictable behaviors.

“the behavior is really hard to manage and steer”
“questions of how you actually process the input and output”

Challenges in Testing and Validation

Testing and Benchmarks The lack of standardized metrics and the need for
custom testing solutions for LLMs.

“The hard parts are testing and benchmarks, especially for more
qualitative output...”

Safety, Privacy, and
Compliance

Concerns about AI actions that could have real-
world consequences. The need for user consent and
understanding of what the AI does, especially in
compliance-heavy environments.

“Do we want this affecting real people? This runs in nuclear power
plants”
“GPT 4, hosted on openAI... a huge compliance risk for us.”

Challenges in Learning and Developer Experience

Evolution of Knowledge
and Best Practices

The evolving process of understanding LLMs and
the lack of centralized resources for guidance. Chal-
lenges in ramping up new developers.

“This is brand new to us. We are learning as we go. There is no
specific path...”

Developer Experience Difficulties connecting tools, initiating projects, and
the desire for more streamlined toolchains. The need
for better tooling and development environments.

“Obviously initially getting things up and running...”
“I don’t want to spend the time with learning and comparing tools...
I’d rather focus on the customer problem.”

Unfortunately, with generative models, writing assertions was
difficult when each response might be different than the last
one—it was like every test case was a flaky test [9]. P1
explains, “that’s why we run each test 10 times” and only
considered it as passing if 7 of the 10 instances passed. P2
also highlighted the importance of adopting an experimental
mindset, when evaluating inputs into tests, because “If you do
it for one scenario, no guarantee it will work for another”. As
a result, participants, such as P24 and P4 maintained manually
curated spreadsheets with hundreds of “input/output examples”
with multiple output responses per input. Unfortunately, if the
prompt or model changed, these input and output examples
had to be manually updated. Finally, other participants also
leaned into metamorphic testing [10], where they focused on
testing “pass/fail criteria and structure more than the contents”,
such as if “code has been truncated” (P1).

2) Creating benchmarks and reaching testing adequacy:
When performing regression testing or evaluating performance
differences between models or agent designs, participants
wanted to use benchmarks to inform their decisions. How-
ever, there were two immediate problems: 1) there were no
benchmarks—everyone had to figure out how to make their
own, and 2) there was no clear set of metrics or measures
to help understand what was “good enough” or “better”
performance.

P23 explains a possible solution, “especially for more
qualitative output than quantitative, it might just be humans
in the loop saying yes or no”, but that “the hardest parts
are testing and benchmarks” still. P10 further detailed the
challenges of building a manually labeled dataset: “We have

people label about 10k responses... More is always better.”
They outsource the work because “it would be a lot to do
internally. Mind numbingly boring and time-consuming.” It is
expensive as well, as P10 continued, “then it becomes more
about costs. We need to determine if we have budget.”

Once a benchmark evaluation is established, participants
face challenges in integrating it into their software engineering
pipelines, largely due to resource constraints. P9 remarked
on the costs of running the test inputs through the LLM:
“most of these, like each of these tests, would probably cost
1–2 cents to run, but once you end up with a lot of them,
that will start adding up anyway”. P4 attempted to automate
testing but was asked to stop their efforts because of costs in
running benchmarks, and instead would only run a small set
of them manually after large changes. Similarly, P2 describes
an experience where they needed to suspend running tests,
even manually, as it was interfering with the performance of
production endpoints.

Determining the threshold of what’s “good enough” remains
a concern for many participants. P15 muses, “Where is that
line that clarifies we’re achieving the correct result without
overspending resources and capital to attain perfection?” P7
described a simple scheme: “We currently resort to grading—
A, B, etc. Guidelines would help, but aren’t established yet.
Grading introduces its own biases, but by averaging, we can
somewhat mitigate that.”

D. Evolution of Knowledge and Best Practices

The learning challenges faced by our participants mirrored
the experiences of informal learners of ML—Chaudhury et



al. studied non-specialists from diverse backgrounds learning
about ML, and found they struggled to locate and interact with
learning resources and self-regulate their learning efforts [11].
However, several factors amplified and complicated these
challenges.

1) Trailblazing learning strategies: For several participants,
they had to start their learning process “from scratch” (P22),
blindly “stumbling around trying to figure out“ (P5). P1
explains: “This is brand new to us. We are learning as we
go. There is no specific path to do the right way!”

Participants leveraged the nascent community of practices
forming around social media resources [12], such as hashtags
and subreddits dedicated to LLMs. In particular, they found it
useful to see “bunch of examples of people’s prompts” (P23)
and “then comparing and contrasting with what they’ve done,
showing results on their projects, and then showing what tools
they’ve used to do it” (P5).

P7 even described how they were able to bootstrap their
learning with the model itself, “It’s kind of meta, but obvi-
ously, nowadays there’s a VS Code plugin where you can
basically feed all of the code and talk to GPT 4 to ask
questions it. Tells me what to look out for, and that minimizes
the learning curve by quite a bit.”

2) Learning in Ephemeral and Volatile Situations: Un-
certainty in future directions and unstable knowledge com-
pounded challenges in learning. As P7 remarks, making
investments in learning resources such as guidebooks was
not done because “the ecosystem is evolving quickly and
moving so fast”. Furthermore, several participants questioned
the longevity of any knowledge or new skills they were
learning, as P7 describes: “Prompting is such a brand-new skill
that we don’t know how long it will stay”. Participants also
highlighted the impact on learning from a “lack of authoritative
information on best practices”, (P20), a sense of “it’s too
early to make any decisions” (P16), and general “angst in the
community as some particular job function may no longer be
relevant” (P25).

3) Mindshifts in software engineering: For some partici-
pants, there was a moment when they realized they had to fun-
damentally change how they were going to approach problems
and build solutions moving forward. P18 best summarized this
point, “So, for someone coming into it, they have to come into
it with an open mind, in a way, they kind of need to throw
away everything that they’ve learned and rethink it. You cannot
expect deterministic responses, and that’s terrifying to a lot of
people. There is no 100% right answer. You might change a
single word in a prompt, and the entire experience could be
wrong. The idea of testing is not what you thought it was.
There is no, like, this is always 100% going to return that yes,
that test passed. 100% is not possible anymore.”

Even still, overall, there was an overwhelming desire for
best practices to be defined and learned, so they could go
back to “focusing on the idea and get it in front of a customer”
(P12).

E. Safety, Privacy, and Compliance
Software systems that use algorithmic or AI/ML-based

decision-making have been known to exhibit bias and discrim-
ination [5], [6]. Unfortunately, not only are LLMs capable
of demonstrating bias and discrimination, but they can also
introduce additional vectors of harm, as recently highlighted
in a case where a conversation with an LLM was implicated
in a suicide [2].

1) Safety concerns: Ensuring the safety of the user and
installing “guardrails” was a significant priority for software
engineers. P11 described how it was “scary to put power into
the hands of AI—Windows runs in nuclear power plants”.
A common tactic was to detect off-topic requests; however,
P10 describes how easily a conversation could go off track,
“We would ask would you recommend this to a friend? to
collect feedback. But, people would say no one would ask me
about this, I don’t have friends. We want to steer the model
to not ask why don’t you have any friends”. To alleviate some
of these efforts, some companies required product copilots to
call managed endpoints with content filtering on all requests.
However, these were not always sufficient, leaving some
engineers to use rule-based classifiers and manual guardlists
to prevent “certain vocab or phrases we are not displaying to
our customers.” (P10).

2) Privacy and telemetry constraints: Another source of
complexity was ensuring that privacy and security were re-
spected in both the input given and output retrieved from the
models. For example, P7 had to add additional processing
to ensure that the “output of the model must not contain
like identifiers that is easily retrievable in the context of our
overall system.” Sometimes, this was made more complicated
when balancing policies from third-party model hosts. One
participant revealed, “in fact, we have a partnership with
OpenAI where we would actually host an internal model for
us just because the policies is like they can actually ingest
any conversation to use as a training data that it’s like a huge
compliance risk for us.”

Unfortunately, ensuring safety and privacy was made more
difficult by the catch-22 situation with telemetry, which is
commonly used for logging events and feature usage [13]. For
most software engineers, such as P14, “Telemetry is ideal
way to understand how users are interacting with copilots”.
But as P2 explains, “We have telemetry, but we can’t see user
prompts, only what runs in the back end, like what skills get
used. For example, we know the explain skill is most used
but not what the user asked to explain.” P4 concludes that
“telemetry will not be sufficient; we need a better idea to see
what’s being generated.”

3) Responsible AI: While some software engineers have
experience with privacy and security reviews, performing a
responsible AI assessment—a compliance and safety review—
was a new experience for most software engineers.

P3 describes their experience, which first started with an
“impact assessment”. The assessment required reading dozens
of pages to understand the “safety standards and know if your
system meets those standards. I spent 1–2 days on just focus



on that.” Then, they met with their AI assessment coach: “The
first meeting was 3.5 hours of lots of discussion”. The outcome
was “a bunch of work items, lots of required documentation,
with more work to go.” Compared to other security or privacy
reviews, which took 1–2 days, for P3, the process required
two weeks of work. P24, also went through a responsible AI
assessment, and one major outcome was the need to generate
an automated benchmark to ensure that the endpoint’s content
filter flagged any content involving several categories of harm,
including hate, self-harm, and violence, which each involve
hundreds of subcategories. For P24, this is of the highest
priority—“we can’t ship until this is done”.

F. Developer Experience
Finally, participants had much to say about the developer

experience and tool support (as well as the lack of tools).
1) Rich ecosystems drive initial adoption: When examining

possible tools or libraries for building copilots, participants
often leveraged using many examples [14] for “knowing the
breadth of what’s possible” (P15). For example, when building
prototypes, langchain was often the library of choice
for most participants, who valued the “clear-cut examples”
(P15), “basic building blocks and most rich ecosystem” (P9).
However, participants found growing pains “if you want to get
deeper” (P15) beyond prototypes, requiring a more systematic
design effort. As a result, most participants we interviewed
ultimately did not consider langchain for actual products:
“langchain is on our radar, but we are not looking to change
right now” (P20). Furthermore, P12 explained their fatigue
with navigating the tools ecosystem: “I don’t want to spend
the time with learning and comparing tools. Even langchain
has a lot to learn. I’d rather focus on the customer problem.”

2) Getting started and integration woes: Participants, such
as P5, expressed the challenges in bootstraping a new project
and the lack of integration between tools. “Obviously initially
getting things up and running, getting the frameworks is kind
of a pain point. There’s no like consistent easy way to have
everything up and running in one shot. You kind of have to do
things piece-wise and stick things together.” Even something
as simple as calling different completion endpoints could be
problematic, as P20 had to account for different “behavioral
discrepancies among proxies or different model hosts” they
might use. Finally, P15 expressed the desire for “a whole
design or like software engineering workflow where we can
start breaking up the individual components rather than just
jumping in,” P15 continued, “for example, being able to have
validation baked in, separately defining the preconditions and
postconditions of a prompt”.

Across the discussions with participants, there was a “con-
stellation of tools” that they were using to piece things to-
gether, but there was “no one opinionated workflow” (P8) that
integrated or combined, prompt engineering, orchestration,
testing, benchmark, and performance and telemetry.

V. LIMITATIONS

Any research methodology possesses inherent advantages
and drawbacks. Employing semi-structured interviews pro-

vides participants the liberty to share their experiences in
a fluid setting, encouraging the spontaneous emergence of
broader themes. However, they often lean on the participants’
recall capabilities and may sometimes reflect what participants
believe they ought to do rather than their actual practices.
On the other hand, brainstorming sessions offer a structured,
problem-centric approach, enabling participants to collabo-
ratively delve deep into specific themes. Our mixed-method
study is designed to harmonize the benefits and address the
shortcomings of each method.

The identified pain points predominantly stem from the
professional roles of the participants and the capabilities of the
models they integrate. Such observations might not necessarily
resonate with engineers possessing varying AI expertise or
differing AI involvement degrees. It’s plausible that as model
capabilities evolve, some existing pain points may dissipate,
while new challenges might surface with the revelation of
novel model attributes.

Qualitative research’s validity establishment is inherently
demanding, given the susceptibility to several biases, notably
researcher bias, confirmation bias, and interpretive validity.
To mitigate these limitations, our approach encompassed (1)
enlisting professional software engineers actively engaged in
implementing AI features, (2) consistently prompting par-
ticipants to substantiate their responses with recent work
instances, and (3) drawing participants from diverse companies
and backgrounds to ensure a comprehensive perspective.

VI. RELATED WORK

Recently, we have seen an emerging trend of tools to help
users create and test prompts. Jiang et al. [15] propose Prompt-
Maker, a tool for prototyping with LLMs. The tool helps users
to write prompts by using a template language and a struc-
tured user interface to add few-shot examples. Additionally, it
enables users to run their prompts on different inputs. They
conducted a case study with industry professionals for three
weeks. Similar to the participants in our study, the participants
in their study also reported challenges with debugging prompts
and evaluating them systematically. Brade et al. [16] propose
Promptify, a system to help developers write prompts for text-
to-image generation. Given initial inputs for the prompt, the
system produces prompt suggestions and clusters the different
model responses to help refine the prompt.

While the above systems help users to prototype and
refine single prompts, researchers have also proposed tools
to help developers compose prompt chains (orchestration).
PromptChainer [17] is a visual programming user experience
for creating prompt chains. Similarly, AI Chains [18] allows
users to create prompt chains through a visual language. It also
contains eight curated LLM-based operations that can be used
to compose more complex operations. ChainForge [19] allows
users to define prompt chains and do hypothesis testing. These
systems can help with some of the challenges identified in our
study related to orchestration and testing. However, chaining
some IDE components may be non-trivial. For instance, de-
bugger or static analysis tools often require launching the user



solution in the IDE making it harder to connect such tools
to any of the aforementioned prompt chaining tools. Liang
et al. [20] proposed HELM (holistic evaluation of language
models), an evaluation pipeline that evaluates 78 models in 42
scenarios and several metrics. Such an evaluation pipeline can
improve developers’ trust in LLMs with respect to accuracy,
robustness, bias, toxicity, etc. However, HELM focuses only
on model evaluation. Creating pipelines to evaluate the entire
orchestration remains a challenging problem.

While we focused on the engineering challenges of building
copilot products, researchers have investigated other industrial
challenges such as user experience and performance of LLM-
based tools. Murali et al. [21] conducted a large-scale study of
CodeCompose, an AI assistant deployed at Meta. They listed
several industrial challenges and learnings related to trust, user
experience, and evaluation metrics identified based on early
adoption of CodeCompose. Vaithilingam et al. [22] present
a systematic design exploration of user interfaces for code
change suggested by Visual Studio IntelliCode. They evaluated
the proposed designs in a large-scale deployment and proposed
design principles for code change suggestions. Nahar et al.
identified 19 potential solutions practitioners across product
teams at Microsoft are using to integrate LLMs into prod-
ucts [23]. Finally, there has been an extensive amount of work
in integrating LLMs in software engineering tools [24], such
as automated program repair and requirements engineering.

VII. DISCUSSION

In our focus group discussions with professional developer
tool builders, we identified several opportunities for tech-
niques, tools, and processes relevant to product copilots.

A. Adding engineering to prompting

Participants engaged in a trial and error process, often
using playgrounds, to craft prompts (Section IV-A1), but strug-
gled with consistent output from the models (Section IV-A2)
and balancing additional context with token limits (Section
IV-A3). Finally, participants shared challenges in managing
versions of templates, examples, and prompt fragments (Sec-
tion IV-A4). Overall, their prompt engineering efforts were
toilsome but often lacked proper engineering support.

1) Authoring and validating prompts: Tool builders iden-
tified several opportunities for supporting these needs. To
help address issues with prompt engineering, one common
suggestion was to support authoring, validation, and debugging
support for executing prompts. For example, a prompt linter
could be used to validate the prompts using the best practices
defined by the team. For instance, models tend to ignore
verbs, such as “may” or “can” but will follow instructions
that include “will”. Another more extensive example: if a
copilot can generate code in multiple programming languages,
the prompt should avoid hard-coding instructions of only one
language, such as C#—which can inadvertently bias the model
to generate the wrong language—ideally, language-specific
instructions and examples should be dynamically inserted
based on the target language.

2) Tracing and optimizing prompt completions: Further-
more, if a technique could effectively trace the impact of
changing a prompt with generated output, many applications
can be built. As one example, prompts could be compressed
and shortened by taking inspiration from techniques like delta-
debugging [25], or test-case reduction [26], to systematically
eliminate portions of the prompt and inspect the impact on
the generated output. That way, the most important and least
impactful part of instructions can be identified, visualized, and
even eliminated.

3) Rubberduck your prompt writing: Finally, one tool
builder shared their strategy of using GPT-4 as a sounding
board while writing and debugging their prompts:

I can’t tell you how many times I’ve leaned on
GPT-4 to detect ambiguous scenarios. For example,
recently, I found that I was referring to “user ques-
tion” in the system prompt but as “user ask” within
some rules. That little difference led to inconsistent
rule applications. Now I’m re-running a GPT-4 “is
this clear” prompt on all my prompts I write.

B. Copilot lifecycle tools

Participants leveraged advanced agent and orchestration
paradigms to control model behavior (Section IV-B) but
struggled with integrating context and commanding (Sec-
tion IV-B2), having visibility into model performance (Sec-
tion IV-B4), testing and evaluating performance (Sec-
tion IV-C), and ensuring safety and privacy (Section IV-E).
Furthermore, participants often lacked the resources to create,
annotate, and run benchmarks (Section IV-C2).

1) Commanding and context tools: Barke et al. posit that
lack of transparency about the shared context and lack of
control in refining the context selections can leave users in a
confused state [27]. Chopra et al. found that providing context
efficiently was a significant challenge for data scientists using
ChatGPT [28]. Furthermore, McNutt et al. describe potential
design mechanisms for making it easier for the user to share
context with the LLM [29]. Based on initial product feedback,
users were frustrated when they performed an action, but the
copilot could not see them perform it or was unaware they
performed the action. Similarly, users had the expectation that
a copilot could perform any command available while using
the product. Unfortunately, considerable engineering effort
and safety concerns must be addressed before open-ended
access can be made to products via the copilot interface.
Thus, it remains an open challenge to effectively support
the mechanisms for enabling better context and commanding
experiences for both users and the engineers enabling them.

2) Automated benchmark creation and metrics support:
Tool builders expressed interest in creating a system that
captures direct feedback from crowdsourced evaluators or end-
users. The envisioned system would convert binary feedback,
like a thumbs up or down, into a comprehensible benchmark.
Rather than diving deep into complex metrics, many were
inclined towards receiving a straightforward percentage eval-
uation, with actionable insights to guide evaluation.



Tool builders differed in opinion on the role and need for
metrics. When we prompted participants about their familiarity
with advanced machine learning metrics like BLEU [30] or
datasets such as HumanEval [31], a majority were disinterested
in using or learning about any machine learning metrics,
instead wanting to focus on more familiar software engineering
and business-centric metrics. One prevailing sentiment was the
irreplaceable role of human judgment: ”Humans will always
have to be in the loop.” Another emphasized the primacy of
user satisfaction, stating, “The ultimate metric is whether a
user finds it useful. Everything else is an approximation.”
While automation can address many challenges in software
development, it is not the solution to everything. The absence
of universally applicable metrics and the potential high costs
associated with automating evaluations remain challenging.

3) Awareness and visibility: Tool builders suggested mech-
anisms for providing stakeholders timely warnings of drastic
cost changes in copilot behavior. Because even small changes
in prompts can have large and cascading effects on per-
formance, tool builders strongly recommended that rigorous
regression testing tools be used when building copilot systems.

Finally, given the intricate layers and transformations intro-
duced by tools and pipelines on prompts, participants raised
concerns on readability and interpretability. Recent systems
have been proposed for helping end-users understand and steer
the AI’s “thought process” through task decomposition and
editable plan outlines [32], [33], [34], though it is an open
question as to how such techniques scale to assist tool builders.
Tools that provide traceability of prompts and model responses
can empower developers to better comprehend and address any
anomalies in the generated responses.

C. Ecosystem support and broader impacts

Participants leveraged nascent communities of practices
organized through social media and a plethora of examples
to learn how to build copilots (Section IV-D1), but they still
struggled with selecting and integrating tools to meet all the
steps necessary in building a copilot (Figure 2).

1) Towards a one-stop shop: Integrating diverse tools into
a cohesive workflow remains a significant challenge. Devel-
opers are seeking a unified “one-stop shop” to streamline the
development of intelligent applications. Current solutions, like
Langchain, fall short in this regard. Initiating such projects also
presents its challenges. Developers want templates designed
for popular applications, such as a Q&A. These templates
would come bundled with essential configurations like hosting
setups, prompts, vector databases, and tests. Additionally, with
the vast options for tools and approaches available, any tool
for guiding a developer in selecting the most fitting suite of
tools will be invaluable.

2) Be prepared for disposable applications: Numerous par-
ticipants and tool builders noted their experience with fragility
in prompts, both in managing the consistency of outputs and
performance across models. As new models emerge and the
ability to fine-tune models becomes cheaper, the ability to
build long-lasting systems may be eclipsed by the speed of

technology invention. Like the wait calculation in the incessant
obsolescence postulate [35], engineers will need to make a
pragmatic decision on when a model and ecosystem is stable
enough as a foundation for a system versus when it’s worth
waiting for new inventions to come.

VIII. CONCLUSION

The proliferation of product copilots, driven by advance-
ments in LLMs, has strained existing software engineering
processes and tools, leaving software engineers improvising
new development practices. Our study, involving 26 profes-
sional software engineers, revealed critical pain points across
the entire engineering process for developing such AI-powered
products.

Developers face numerous challenges when interacting with
LLMs, such as the intricate and fragile process of prompt
engineering, which necessitates a significant amount of “trial
and error” and reactionary modifications for structuring out-
puts effectively. Additionally, issues arise in orchestrating
advanced workflows, managing complex states, and the un-
predictability of LLM behaviors, coupled with the absence
of standardized testing metrics, necessitating the creation of
custom solutions. Furthermore, as the field evolves, there is
an evident need for centralized resources and best practices to
guide understanding, while concerns about safety, privacy, and
compliance loom large, especially in sensitive areas. Finally,
the overall developer experience is hampered by inadequate
tooling and integration difficulties. In light of these challenges,
there is a glaring need for comprehensive tooling and best
practices tailored for building AI copilots. Our study serves as
a foundation for guiding the way toward a more streamlined
and efficient future for AI-first software development.
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