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Abstract— Developers performing maintenance activities 

must balance their efforts to learn the code vs. their efforts to 
actually change it. This balancing act is consistent with the “pro-
duction bias” that, according to Carroll’s minimalist learning 
theory, generally affects software users during everyday tasks. 
This suggests that developers’ focus on efficiency should have 
marked effects on how they forage for the information they think 
they need to fix bugs. To investigate how developers balance fix-
ing versus learning during debugging, we conducted the first 
empirical investigation of the interplay between production bias 
and information foraging. Our theory-based study involved 11 
participants: half tasked with fixing a bug, and half tasked with 
learning enough to help someone else fix it. Despite the subtlety 
of difference between their tasks, participants foraged remarka-
bly differently—making foraging decisions from different types 
of “patches,” with different types of information, and succeeding 
with different foraging tactics. 
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I. INTRODUCTION 
Software maintenance invariably requires some learning of 

the current code before making changes, so as to plan correct 
and efficient changes. For example, one study suggested that 
methodical exploration of code prior to making maintenance 
changes can cut the time of actually coding in half [34]. Be-
cause of this connection between comprehension and mainte-
nance, a wide range of tools aim at aiding program exploration 
and comprehension during maintenance and evolution (e.g., 
[2][11][12][15][21][25][42][43][44]). 

It is therefore troubling that a recent observational field 
study of work practices revealed that “wherever possible, de-
velopers seem to prefer strategies that avoid comprehension” 
of existing code [35]. Specifically, this study found that devel-
opers frequently tried to move forward with coding as quickly 
as possible (what could be considered a form of satisficing 
[37]), with a minimal amount of activity invested ahead of time 
in exploring the code they were about to modify. Such results 
are consistent with those of other studies [3][17][23].  

Based on such findings, Maalej et al. concluded: 

Software comprehension is a hard and time-consuming task 
and consequently is avoided whenever possible. This indi-
cates that Carroll’s minimalist theory [Carroll 1998], which 
suggests people put in the minimum effort to maximize 

their outcome, is applicable … We think that researchers 
should consider developers as users and investigate how 
‘user-developers’ analyze application behavior, how they 
relate observations to code, and how this behavior can be 
supported by tools [23]. 

 This tendency of software developers to view learning as a 
costly task detracting from their efficiency is called production 
bias in Carroll’s theory [5][6]. To date, the effects of produc-
tion bias on developers have not been investigated in detail. 

In this paper, we investigate these effects and their implica-
tions for tool design. Our investigation is grounded not only in 
Carroll’s theory, but also in Information Foraging Theory (IFT) 
[29]. IFT provides a conceptual framework describing how 
people in an information environment, such as an IDE, seek 
information. For developers faced with a bug, the information 
they seek can include how to reproduce the bug, what causes 
the bug, where to fix the bug, and whether similar bugs were 
fixed elsewhere [23].  

We performed our investigation by conducting a qualitative 
laboratory study. One group of developers was tasked with 
fixing a bug, whereas the other group was tasked with learning 
enough about the bug to help someone else fix it. We assigned 
people these differing tasks to reveal and analyze differences in 
their behaviors from both an IFT and a production bias per-
spective to address four research questions: 

• RQ1 (information goals): How does trying to fix a bug ver-
sus trying to learn about the bug affect the types of infor-
mation that developers seek?  

• RQ2 (information patches): How does trying to fix a bug 
versus trying to learn about the bug affect where in the en-
vironment developers make foraging decisions?  

• RQ3 (information cues): How does trying to fix a bug ver-
sus trying to learn about the bug affect the types of cues de-
velopers attend to when making foraging decisions? 

• RQ4 (foraging tactics): How does trying to fix a bug versus 
trying to learn about the bug affect the tactics that develop-
ers use in making their foraging decisions? 

II. BACKGROUND 
Viewing developers’ code exploration during debugging 

through the lens of a theory can provide a conceptual frame-
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work for thinking about what aspects of their behavior might 
vary depending on the presence of production bias. In essence, 
IFT [29] gives a meaningful way to “carve up” the information 
environment and the developers’ actions within that environ-
ment, then to investigate differences among developers in 
terms of how they use the environment. IFT is an appropriate 
theory for this purpose because it has already proven useful for 
explaining and predicting how developers find information 
during maintenance, in ways beneficial to tool design (e.g., 
[8][9][10][18][19][20][28]). 

IFT’s main constructs consist of a predator (a human 
forager) who seeks prey (information) within an information 
environment made up of information patches (such as 
documents and screens of information, as in Fig. 1) connected 
by links. The predator navigates among these patches by 
traversing the links, which involves taking some navigation 
action, such as clicking or scrolling. Each link has a cost of 
traversal (the time to get from one patch to the other) that is 
influenced by both system performance and the human’s 
cognitive and physical speed.  

The within-patch constructs consist mainly of information 
features (e.g., words, phrases, and graphics), some of which 
may be the prey that the predator seeks. Information features 
have value, and they also have cost (e.g., time for the human to 
read and process them). Some of the information features are 
cues associated with outgoing links to other patches. Cues 
(e.g., labels on the links) provide the predator with hints about 
what information features may be found at the other end of the 
link. Fig. 2 conceptually illustrates two patches with 
information features, cues, and links. In modern development 
environments, like Eclipse, most displayed text has some form 
of clickable link (e.g., the Open Declaration shortcut on identi-
fiers in the Editor), leading to a high density of cues in such 
environments. 

These constructs are tied together via IFT’s central 
proposition about how the predator forages for information. 

The predator’s available choices at a given moment are (1) to 
process information features within the current patch, (2) to 
navigate to another patch via a link, or (3) to enrich the 
environment, such as by decorating a patch (e.g., by annotating 
it), or by creating a new patch (e.g., by querying a search 
engine to create a list of search results). IFT’s central 
proposition is that the predator will tend to choose the action 
that maximizes the expected value of information gained per 
expected cost of interaction.  

However, the predator is not omniscient and may not know 
the actual value and cost that a choice will yield. Thus, the 
predator makes choices that follow from his/her expectations 
about the value and cost. The predator may base such choices, 
for example, on whatever he/she infers from the available cues.  

The predator’s inferential judgment of value and cost are 
captured by IFT’s final construct: information scent—that is, 
the predator’s assessment of the costs vs. benefits (i.e., value) 
that following a link will yield, given the cues associated with 
that link. In the second choice above, navigating to another 
patch via a link, the predator uses scent to decide which link to 
follow. Specifically, IFT states that the predator will choose the 
link with the strongest scent (greatest benefit per cost).  

Although there have been a number of promising research 
results that leverage IFT as the basis for models and tools (e.g., 
[7][20][27][28][31]), to date, IFT has not specified how people 
will forage, or how tools should help people forage, in the face 
of production bias. The theory suggests only that foraging be-
havior would change if production bias affects how people 
perceive the value and cost of patches and cues (i.e., scent). 
Our paper fills that gap by uncovering both whether and how 
production bias’s tension of learning vs. efficiency affects 
information foraging during software maintenance. 

III. METHODOLOGY 
To model Minimalist Learning Theory’s tension between 

learning vs. “doing,” we randomly assigned each participant to 
one of two treatments: Fix or Learn. We told participants in the 
Fix treatment group to fix a particular bug in a program. We 
told participants in the Learn treatment group to learn enough 
information about that same bug to be able to on-board a 
programmer new to the team—that is, enough to “help the new 
programmer fix the bug.” Thus, both groups needed to find the 
same information, but only the Fix group was asked to actually 
fix the bug. Thus, for the Learn group, we framed learning 
“enough” as an end in itself.  
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Fig. 1. An information environment (Eclipse) as a developer (predator) might 
see it during debugging. Patches of information content are visible in the (a) 
Package Explorer, (b) Editor, and (c) Outline View (plus a region (d) where 
other patches can appear). As the blow-ups of (a) shows, each item in the 
Package Explorer is an information feature and also a cue, because the item 
has a link: clicking it opens a file. In (b)’s blow-up, the text “openFiles” in the 
Editor is also an information feature and a cue, because it has a clickable link. 

 

 
Fig. 2. Conceptual depiction of an information environment with two in-
formation patches (rounded boxes) interconnected by links (directed edges). 
Each patch contains information features (hexagons), with some that are 
also cues (connected to outgoing links).  



 However, we did not control how much fixing or learning 
participants actually did. Indeed, both treatment groups would 
need to do some learning/comprehension of the buggy code, 
and would have to decide when they had learned “enough.” 
Also, we did not stop any participants from fixing: when Learn 
participants asked if they could fix the bug, we told them to 
feel free to do whatever they felt was necessary to learn what 
they needed to learn. 

A. Procedure 
The code that both groups worked with was from the jEdit 

project, an open source code editor consisting of 98,652 non-
comment lines of Java code. All participants received a copy of 
bug report #3223 from jEdit’s issue-tracking system, which 
described a problem with deleting “folded” code. All 
participants had access to the same tools, which consisted of 
the Eclipse integrated development environment and other 
software commonly found on a Windows PC, including a web 
browser with unrestricted access to the Internet. 

Randomly dividing the 11 participants into two treatments 
resulted in 6 Fix participants and 5 Learn participants. Each 
participant had an individual session, lasting at most 2 hours. 
Throughout the session, we collected video recordings of the 
participant as well as screen-capture video. First, the 
participant filled out a background questionnaire, and we 
briefly explained what they should do (to learn “enough” or to 
fix, depending on treatment). Next, the participant worked for 
30 minutes while “talking aloud.”  

Participants’ foraging decisions were the moments of trade-
off (e.g., forage to fix, to learn this, to learn that, etc.). Thus, 
following a short break we conducted a semi-structured 
retrospective interview with each participant by playing back 
all of the screen-capture video, then asking why the participant 
made each foraging decision we observed and what 
information was learned after making that foraging decision. 

B. Participants 
The participants were computer science students with 

software engineering experience. All participants had 3–7 
years of programming experience (mean: 4 years). All had 1–7 
years of Java programming experience (mean: 3 years), and all 
were familiar with Eclipse. They were 20–30 years of age; 9 
were males and 2 were females.  

C. Qualitative Analysis Methods 
We used a multi-phase qualitative coding process to 

analyze participants’ information foraging behavior, as 
depicted in Fig. 3. For each coding phase, after two researchers 
developed and refined the rules for each code set, they 
independently coded the same 20% of the data (at least). We 
then calculated inter-rater reliability using the Jaccard index. 
Our inter-rater reliability was 81%–92% on all code sets. 
Given this high level of reliability, the two researchers then 
split up the remaining data to code independently. 

1) Code set A: Participants’ foraging decisions (RQ1–4) 
We first focused on participants’ foraging decisions—the 

moments they explicitly chose one patch over another (Fig. 

3A-i). We coded a foraging decision (1) if the participant 
verbalized that he/she was making a decision between visiting 
two or more patches (e.g., Java methods), (2) if the 
participant’s mouse movement included hesitation over two or 
more hyperlinks from a list (e.g., as in search results), or (3) if 
the participant scrolled between two or more methods while 
deciding which to investigate next. 

We then verified our decision codes using the retrospective 
interviews (Fig. 3A-ii). Specifically, after we coded the 
foraging decisions from the videos, we then checked what each 
participant had said during the interview. If he/she stated that 
no foraging decision had occurred in a place where we had a 
coded one, we removed the code. If during the interview, the 
participant pointed out a foraging decision that we had not 
coded, we added it. One example was when a participant 
paused to consider which method to investigate next without 
speaking or moving the mouse. If the interviewer did not ask a 
participant about an instance that we later identified as a 
foraging decision, we let our code stand. 

2) Code set B: Participants’ information goal types (RQ1) 
For each foraging decision, we then coded the participant’s 

information goal type (Fig. 3B). To identify participants’ 
information goals as they foraged, we coded participants’ in-
formation goals using 44 previously documented questions 
developers ask [38] (Fig. 3B-i). For the purpose of analysis, we 
used the four categories that Sillito et al. grouped the questions 
into. We chose this code set because it was a good fit for the 
program-debugging domain and was consistent with 
information goals reported in other studies [9][19][28][30]. We 
then mapped the goals to corresponding foraging decisions 
whenever participants said that a foraging decision was 
connected to a particular information goal (Fig. 3B-ii). 

3) Code set C: Participants’ cues (RQ3) 
For each foraging decision, we also coded the types of cues 

the participant considered when making the decision (Fig. 3C). 
Recall that a cue acts as a signpost, providing hints as to the 
information at the end of a link. Since no existing cues code set 
was available, two researchers iteratively developed coding 
rules for the types of cues to which participants attended based 
on their verbalizations. That code set is detailed with the RQ3 
results (Section IV.C) for clarity of presentation. 

4) Code set D: Participants’ foraging successes (RQ4) 
We coded the outcome of a foraging decision as successful 

if the participant said that his/her information goal was 
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i.  Code%task%video%
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ii.  Connect%goal%to%decision%%
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Code%par)cipants’%foraging%successes%
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Fig. 3. Our multi-phase qualitative coding process.  
 



fulfilled, as unsuccessful if the participant said it was not, or as 
unknown if the participant gave no indication (Fig. 3D). 

5) Objective categorizations 
In addition to the above subjective code sets, we were able 

to objectively derive (thus with 100% reliability) two 
categorizations directly from the data: patch types (RQ2) and 
foraging tactics (RQ4). We detail these categorizations in their 
associated results sections. 

D. Statistical Analysis Methods 
Although it is atypical to statistically analyze qualitative 

talk-aloud data, we were able to obtain enough data to allow 
quantitative analysis as well. Our statistical analysis investigat-
ed whether participants in the two groups had different infor-
mation goals (RQ1), made decisions in different patch types 
(RQ2), relied on different cues (RQ3), and followed different 
tactics (RQ4).  

The simplest analysis approach would have been to use chi-
squared tests—for example, to construct a two-factor table of 
treatment group versus patch type, compute for each table cell 
the number of decision events from the corresponding treat-
ment group and patch type, and then to use the chi-squared test 
to test the null hypothesis that treatment had no effect. Unfor-
tunately, this simplistic approach would fail to account for the 
fact that, within a given participant, navigation events are not 
statistically independent. 

Therefore, we instead relied on a three-factor table of the 
participant identity, the treatment group, and the IFT factor of 
interest (i.e., goal/patch/cue/tactic). Since the chi-squared test 
does not apply to three-factor designs, we used the well-
established method of log-linear transformation followed by 
analysis of residual deviance [1], which yields a chi-squared 
statistic suitable for computing a valid p value. Even though we 
had only 11 participants, we had adequate statistical power 
because our unit of analysis with this technique is not 
participants, but rather decision points (81 total).  

IV. RESULTS 
We report the results for each research question in turn. In 

the following, Png denotes the participant with ID n in 
treatment g (e.g., P9F is Participant #9 in the Fix group). 

A. RQ1. What Shall I Look For? Participants’ Goals 
For RQ1, participants’ information goals, we coded their 

goal-related verbalizations around each decision point (code 
sets A and B in the previous section). Statistically, Fix and 
Learn participants’ information goal types did not differ 
significantly (Analysis of deviance, χ2(4)=7.53, p=0.11). 
Qualitatively, the Fix participants’ and Learn participants’ 
goals also seemed similar. For example, participants in both 
treatments looked for the “delete lines” menu-item: 

P2F: I’m going to search for that delete lines thing in the 
code to see what it does. 

P10F: So I can search for that text. Delete lines. 
P4L: Delete lines. I’m searching for delete lines. 

P11L: Okay I should be looking for this text (delete lines). 
How do I find this text? 
This lack of a statistical difference in information goals 

suggests two possible interpretations. If there was in fact no 
difference, then differences between the groups’ foraging be-
havior reported in the upcoming sections occurred despite there 
being no difference in the participants’ information goals. On 
the other hand, if there was a marginal difference, then it adds 
to differences reported in the upcoming sections. 

B. RQ2. Turning Points: The Patches from which 
Participants Made Navigation Decisions 
A foraging decision among multiple cues is a turning point: 

should I go to A to fix something, to B to learn something 
about the code, or to C to learn something different? To 
address RQ2, we analyzed the patches at which each of these 
turning points occured. 

Toward that end, we operationalized IFT’s patch construct 
such that each view (sub-window) in an Eclipse window and 
each jEdit window (i.e., the program with the bug) was a patch 
type, containing one or more patches. For example, Fig. 1 
depicts an Eclipse window with three patch types, each 
containing at least one patch . 

Table 1 shows the types of patches and characterizes the 
content each type offers. For example, Package Explorer 
patches (e.g., Fig 1a) give high-level structural overviews of 
the code, whereas Stack Trace patches (e.g., Fig. 4) give links 
to low-level code locations along with an execution path that 
produced an error (i.e., a thrown exception), and Search Result 
patches (e.g., Fig. 5) give a list of navigable search results. 
Table 1 only shows patches within the IDE due to a lack of 
foraging outside of Eclipse. (The exceptions were P2L, P5L, 
P9F, who briefly used a web browser.) Patches may also exist 
elswhere, but we did not include them in Table 1. 

With these patch types, we analyzed participants’ 
navigation decisions (Section III.C.1) among the patches. 
Because each navigation decision by a forager had a start and a 
destination, there are two patches of potential interest for each 
decision: the starting patch and the destination patch.  

For example, a programmer might be reading in the 
Package Explorer view (Fig. 1a), and make a navigation 
decision, clicking on one of the hyperlinked items in the view. 
As a result, the Editor (Fig. 1b) would automatically open a file 
and scroll to display a particular line of code. In this example, 
the starting patch was in the Package Explorer and the 
destination patch was in the Editor. 

The links provided by Eclipse views predominantly lead to 
Eclipse’s editor view (as destination), so it is not surprising that 
most (76%) of navigation decisions led to the Editor, 
regardless of treatment group. So the two treatment groups did 
not differ in their decisions’ destination patch types.   

However, as shown in Fig. 6, Fix and Learn participants 
demonstrated significant differences in the starting patch types, 
i.e., those from which they made navigation decisions 
(Analysis of deviance, χ2(11)=28.8, p=0.002).  

 



 

Specifically, Learn participants tended to make navigation 
decisions in patches that were like the table of contents (ToC) 
of a book: Package Explorer and Search Results patches (e.g., 
Fig. 1a and Fig. 5, respectively). These patches were ToC-like 
because the information they contained described the hierar-
chical structure of the code components (i.e., the chapters and 
sections of the book), and the links connected to code elements 
at the granularity of components. Although Search Results 
patches might not immediately seem ToC-like, their results 
were presented as a structural hierarchy similar to Package 
Explorer patches (i.e., with hierarchical package and class file 
nodes that participants had to expand to reveal their contents). 

In contrast to the Learn participants, Fix participants tended 
to make navigation decisions in patches that were like the in-
dex of a book: Stack Trace patches (e.g., Fig. 4). Like an index, 
Stack Trace patches contained a flat (non-hierarchical) list of 
elements, and their links connected to individual lines of code. 
Unlike Search Results and Package Explorer patches, these 
index-like patches provided few cues regarding how destina-
tion patches were embedded within the context of the overall 
code structure.  

TABLE 1. TYPES OF PATCHES IN WHICH PARTICIPANTS MADE FORAGING 
DECISIONS. THE RIGHTMOST COLUMN IS THE NUMBER OF FORAGING 

DECISIONS MADE FROM THAT PATCH TYPE. 
 
 
 
 

Patch Type Information and Navigational Links # 

Editor 
Provides a listing of the code in a file. Identifiers in 
the code are linked to associated Call Hierarchy 
and/or Search Results patches. Example in Fig. 1b. 

37 

Stack 
Trace 

Provides a list of code locations along an execution 
path that produced an exception (i.e., internal error) 
in the running jEdit program. List items are linked 
to the associated lines of code (opened in an Editor 
patch). Example in Fig. 4. 

23 

Package 
Explorer 

Provides a hierarchical list of the components (e.g., 
packages, classes, fields, methods) in the project. 
List items are linked to associated lines of code 
(opened in an Editor patch). Example in Fig. 1a. 

18 

Search 
Results 

Provides a generated list of occurrences of user-
entered text or a user-selected identifier in an Editor 
patch. List items are linked to the associated lines of 
code (opened in an Editor patch). Example in Fig. 
5. 

18 

Call 
Hierarchy 

Provides a hierarchical list of the invocations of a 
programmer-selected method (i.e., subroutine). List 
items are linked to the associated lines in code files 
(opened in an Editor patch). 

3 

jEdit 
Running 
Instance 

Provides the interface of the running jEdit program 
being worked on. Such patches do not provide any 
direct navigational links to other types of patches. 

2 

Open 
Resource 

Provides a list of all classes in the project filtered 
and sorted based on a programmer-entered text 
query. List items are linked to the associated lines 
of code (opened in an Editor patch). 

2 

Outline 
View 

Provides a hierarchical list of the components (e.g., 
classes, fields, methods) of the file in the Editor 
patch. List items are linked to the associated lines of 
code (opened in the Editor). Example in Fig. 1c. 

2 

Variables 
View 

Provides a list of variables and associated values at 
a given point in the execution of the jEdit program. 
Such patches do not provide any direct navigational 
links to other types of patches. 

1 

 

 
Fig.4. Example Stack Trace patch (Fix Participant P3F). 

 

 
Fig.5. Example Search Results patch. 
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Fig.6. The proportion of patches where each treatment’s participants made 
foraging decisions (showing the 4 most-often used patch types). Percentages 
indicate the number of navigation decisions in a patch type divided by the 
total number of navigation decisions (per-treatment). In parentheses is the 
number of participants in each treatment that made at least one navigation 
decision in that patch type. 

 

 
Fig.7. Learn Participant P5L engaged in considerable within-patch foraging 
for code-structure information using a ToC-like Search Results patch. Each 
box from left to right shows a snapshot of the patch. The highlighted areas 
show the sequence of sub-items that P5L expanded. 

 
 



For example, consider two participants: Learn Participant 
P5L and Fix Participant P3F. P5L foraged extensively within a 
ToC-like Search Results patch. As Fig. 7 depicts, he stepped 
sequentially through the code-hierarchy tree, expanding many 
elements to reveal their inner structure. In contrast, P3F made 
considerable use of an index-like Stack Trace patch for be-
tween-patch foraging, as Fig. 8 illustrates. Whereas P5L was 
concerned with the code’s hierarchical structure, P3F preferred 
to bypass the structure, linking into the middle of structural 
components to inspect individual lines of code. 

P3F in fact commented explicitly on a desire to avoid cer-
tain types of patches…  

P3F: Since [the bug is] something that I'm trying to fix in a 
hurry, I would prefer to do as little of that really high level 
architectural stuff. 

Implications for tools: When developing a new tool, there 
is a temptation simply to display its results as a new view with-
in the IDE (such as a new View in Eclipse), but our results 
suggest that this decision should not be made lightly. If the 
information is hierarchical (i.e., ToC-like), such a new view 
could be a good fit for developers while they are in “learn” 
mode, On the other hand, developers in “fix” mode might be 
better served by the tool enhancing code-level patches with its 
new information. For example, in Eclipse, this might be 
achieved adding iconography within the source code editor.   

Implications for theory: The Learn participants’ tendency 
toward patches that convey high-level structure suggests that 
they assessed cost/benefit differently than Fix participants did. 
Participants assigned to the Learn treatment might have associ-
ated a higher level of benefit to these patches, versus the Fix 
participants who might have associated more benefit with get-
ting to the code-level patches where they would need to make 
edits in order to fix the bug. Our results suggest the need for 
extending IFT with more detailed scent models that more pre-
cisely take into account the developer’s particular situation. 

C. RQ3. Turning Point “Why”s: Cue Types as Sources of 
Inspiration 
A turning point in navigation is not likely to occur in a 

vacuum: something the developer has seen often inspires their 

ensuing decisions. Thus, for RQ3, the cue types we coded 
(Table 2) pertain not to the content of the cues, but rather, to 
the source of inspiration causing the participant’s attention to 
be drawn to that cue.  

For example, as Fig. 9 shows, P5L made a navigation 
decision in an Editor patch (c), and as he did so, indicated that 
his attention was on cues that were “something like a click on a 
menu button” (d). The source for this inspiration came from a 
preceding visit to a jEdit Output patch (a) in which he used the 
jEdit menu item to trigger a failure caused by the bug (b). 
Thus, the cue in this case was of type Output-inspired.  

Applying these cue types, our results revealed marked 
differences in the cues to which Fix and Learn participants 
attended. A log-linear analysis of the cue-type frequencies 
showed a significant difference (Analysis of deviance, 
χ2(19)=33.3, p=0.02). Fig. 10 highlights these differences for 
the most-attended cue types. 

One difference apparent in Fig. 10 is that the Learn 
participants particularly attended to Output-Inspired cues, 
citing Output-Inspired cues in about 45% of their decisions, 
compared to only 28% for Fix participants. One possible 
reason for this tendency was that many Learn participants 
followed a bug-reproduction-driven approach in which they 
followed up on the application’s expected or observed output 
from the very outset of their session. For example, Learn 
participants P6L, P7L, and P11L all began by replaying the 
error in jEdit, and then attending to cues inspired by the 

TABLE 2. THE CUE TYPES TO WHICH PARTICIPANTS ATTENDED WHEN MAKING 
FORAGING DECISIONS. THE RIGHTMOST COLUMN IS THE NUMBER OF FORAGING 

DECISIONS IN WHICH PARTICIPANTS ATTENDED THAT CUE TYPE. 

Cue Type Definition: Participant utterances about… # 

Output-Inspired 
… cues related to jEdit output they had seen, 
such as thrown exceptions (errors) or GUI 
widget labels 

44 

Domain Text … cues related to text they had seen specific 
to jEdit’s domain, such as “folding text”  35 

Level of 
Abstraction 

… cues related to the level of abstraction of 
the a code location they had seen; e.g., “This 
method is too specific” 

21 

Source-Code 
Content Inspired 

… cues related to source code they had seen, 
such as relating to a particular variable or 
parameter, or reminiscent of a code comment 

19 

Position 
… cues related to the position of non-code 
elements they had seen on screen, such as the 
top item in a list of search results 

8 

Familiarity 
… cues that seemed familiar to the participant; 
e.g., “I’ve seen this before” or “This looks 
familiar”. 

6 

File Type … cues related to the type of a file they had 
seen, such as Java vs. XML  5 

Documentation-
Inspired 

… cues related to external documentation they 
had seen, such as the bug report 2 

Source-Code 
Appearance 

Inspired 

… cues related to how source code they had 
seen appears visually, such “large” methods or 
“nearby” methods 

2 

Contrasts 
… cues related to a contrast among items they 
had seen, such a method being from a differ-
ent package than the others in a list 

2 
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Fig.8. Fix Participant P3F used the Stack Trace patch from Fig. 4 as an index 
to forage for particular lines of code in a variety of Editor patches. Each box 
from left to right shows a snapshot of a patch, alternating between the Stack 
Trace patch and Editor patches. The arrows show the links from the Stack 
Trace Patch and the destination lines of code within the Editor patches. In the 
Editor patches, the shaded areas were never visible to P3F (i.e., off screen). 

 



relevant GUI elements (e.g., menu items). Although Fix 
participants also sometimes attempted to reproduce bugs, they 
did so much less than Learn participants. 

The sources of output that inspired Fix and Learn 
participants also differed. Whereas Learn participants primarily 
found inspiration in the program’s visual output (i.e., from 

running jEdit), Fix participants predominantly attended to 
Output-Inspired cues that originated in a Stack Trace patch or 
Variables patch, which were more closely related to low-level 
code details. In fact, only one Fix participant, P2F, had Output-
Inspired cues that were inspired by running jEdit. 

Fix participants’ foraging stayed “closer to the code” than 
that of Learn participants in two additional ways, as well. First, 
as shown in Fig. 10, Fix participants attended to Source Code-
Content Inspired cues more than Learn participants (approxi-
mately 21% for Fix participants versus 8% for Learn partici-
pants). Second, all but two of the instances when Fix partici-
pants attended to this cue type occurred in an Editor patch. In 
contrast, Learn participants attended to Source Code-Content 
Inspired cues over a wider spread of patch types, including 
high-level patch types such as Package Explorer and Outline 
View, as well as low-level patch types like Editor and Stack 
Trace. Thus, although both treatments sometimes attended to 
cues inspired by source code they had seen, Fix participants 
attended to those cues mainly while the source code, but Learn 
participants tended to those cues more broadly, even in patches 
not directly related to the details found in the source code. 

Implications for tools: These results highlight the fact that 
developers might benefit from different cue-enhancement tools 
depending on whether they are trying to fix or learn about 
bugs. For example, the behavior of developers in the Learn 
treatment suggests that they might especially benefit from tools 
oriented toward augmenting Output-Inspired cues. An example 
of such a tool is the Whyline [13], which offers annotated, nav-
igable links directly from program output to the code that gen-
erated that output. On the other hand, the behavior of develop-
ers in the Fix treatment suggests that they might particularly 
value tools that augment Source Code-Content Inspired cues. 
For example, a tool for Eclipse might automatically annotate 
the code with annotations or links related to associated bug 
reports (e.g., as proposed in [26], figure 3). 

For both Fix and Learn developers, Level of Abstraction 
and Domain Text cues played an important role. Most IDEs 
and languages already provide support for viewing the level of 
abstraction associated with a particular piece of code (method, 
class, package, etc.) and for navigating among different levels 
of abstraction. Research has also investigated how to map from 
concerns (i.e., domain requirements such as jEdit’s text-folding 
functionality) to specific locations in the code [24], as well as 
how to analyze code and automatically generate natural lan-
guage text describing the corresponding concerns [33]. Our 
results reiterate the potential value of such tools and emphasize 
the need for getting them into everyday practice by developers. 

Implications for theory: Our results suggest a possible new 
direction for IFT. Prior IFT research has often operationalized 
cue content through the use word-similarity metrics like TF-
IDF (e.g., [18][28]). Our findings are consistent with this 
approach: several commonly attended types of cues were text 
based (e.g., Source Code Content Inspired and Domain Text). 
However, our cue types also revealed differences between the 
treatments without considering cue content. Thus, our 
inspiration-based cue types were able reveal effects on 
foraging that cue content alone might not have. Future IFT-
based models of cues should take into account not only the 

(a)$Navigates$to$jEdit$Patch$

(b)$Triggers$bug$with$
menu$bu:on$

(c)$Navigates$to$Editor$Patch$

(d)$While$choosing$a$method$to$inspect:$“Maybe$…$
something$like$a$click$on$a$menu$bu:on.”$

 
Fig.9. Episode in which P5L attended to an Output-Inspired cue. The source 
of the inspiration came from jEdit output (a and b). P5L attended to the Out-
put-Inspired Cue (“Maybe … something like click on a menu button”) while 
choosing code to inspect in an Editor patch (c and d). 
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Fig. 10. The proportion of cue types each treatment’s participants attended to 
at each navigation decision, showing the four most-often attended cue types. 
Percentages indicate the number of cue types attended divided by the total 
number of cue types attended to (per treatment). In parentheses is the number 
of participants in each treatment that attended to that cue type at least once. 
Fix and Learn participants attended to different cue types for foraging deci-
sions. Shown are the percentages of each group’s total number of cue types 
talked about when they decided among competing cues for the most men-
tioned cue types. 



TABLE 3. PARTICIPANT USAGE AND SUCCESS RATES FOR THE FAVORITES AND 
SWITCHING TACTICS.  

Treatment Participant Most-Used 
Tactic 

Success Rate 
Favorites Switching 

Fix 

P2F Favorites 1/7 0/2 
P3F Favorites 1/6 0/2 
P8F Favorites 2/5 0/2 
P9F Switching 1/1 1/4 

P10F Favorites 0/3 0/1 
P12F Both Equally 0/1 0/1 

Total instances of success: 5/23 (22%) 1/12 (8%) 
Total participants who had success: 4/6 (67%) 1/6 (20%) 

Learn 

P4L Switching 0/2 2/4 
P5L Favorites 1/5 0/0 
P6L Favorites 0/4 0/2 
P7L Both Equally 0/2 2/2 

P11L Favorites 0/4 0/1 
Total instances of success: 1/17 (6%) 4/9 (44%) 

Total participants who had success: 1/5 (20%) 2/5 (40%) 
 

content of cues but also the type of these cues when generating 
predictions about developers’ foraging behavior. 

D. RQ4. How Should I Go About Foraging? Participants’ 
Foraging Tactics 
For RQ4 (Fix versus Learn participants’ foraging tactics), 

participants used two distinct foraging tactics in deciding 
which cues to attend to: a Favorites tactic and a Switching 
tactic. Using the Favorites tactic, a participant would, from one 
foraging decision to the next, attend to cues sharing at least 
some of the same cue types. In contrast, a participant using the 
Switching tactic would, from one foraging decision to the next, 
attend to cues of entirely different types. 

We counted the Favorites and Switching tactics using 
discrete, objective patterns in the sequence of cue types to 
which each participant attended. In particular, if the set of cue 
types attended for one foraging decision was disjoint from the 
set attended for the next decision, we counted it as an instance 
of the Switching tactic. If the sets intersected, we counted it as 
an instance of the Favorites tactic. 

To illustrate the difference in these tactics, consider Fix 
participants P10F and P9F. P10F used the Favorites tactic 
heavily, attending to cues of Domain Text type for every 
foraging decision, continually asking throughout the session 
where “delete line” was located. In contrast, Fix Participant 
P9F attended to Familiarity type cues in one successful 
foraging decision, but then switched to the Source Code-
Content Inspired and Domain Text cue types in his next 
foraging decision only one and a half minutes later.  

At first glance, little difference was apparent between the 
tactic participants used (Table 3, “Most-Used” column). Most 
participants, regardless of treatment, tended toward the 
Favorites tactic. Analysis of their activity showed a suggestive, 
but non-significant difference between treatments (Analysis of 
deviance, χ2(3)=5.93, p=0.12).  

However, a difference between treatments becomes appar-
ent with situations where the outcome of a foraging action was 

successful (code set D in Section III.C). In these situations, Fix 
participants were equally likely to be successful regardless of 
whether they used the Favorites tactic or the Switching tactic 
(Analysis of deviance, χ2(1)=1.10, p=0.29). In contrast, Learn 
participants were significantly more likely to be successful 
when they used the Switching tactic (Analysis of deviance, 
χ2(1)=5.49, p=0.019).  

Thus, not only did the Fix and Learn participants make for-
aging decisions in different types of patches (RQ2) and while 
attending to different types of cues (RQ3), from the RQ4 anal-
ysis in this section, we know they also differed in which forag-
ing tactics most strongly associated with whether or not their 
decisions yielded success. 

Implications for tools: Many studies (Section V) have high-
lighted the gradual but non-monotonic transition during a 
maintenance task from exploring code to modifying code, po-
tentially implying a corresponding shift from behaving as if in 
our Learn treatment to behaving as if in our Fix treatment. It is 
not known whether such transitions affect the level of produc-
tion bias developers feel (or, conversely, whether developers as 
individuals have a more permanent tendency toward learning 
or fixing). But, to the extent that developers do transition from 
one mode to the other during a maintenance task, then they 
may benefit from a corresponding transition in tactics.  

Given our result that Switching among cue types was more 
strongly associated with success in the Learn treatment than in 
the Fix treatment, it is possible that it would be beneficial for 
tools likewise to emphasize a diversity of cue types early in a 
development task. For example, when new prototype tools 
generate search results or navigation recommendations such as 
those described in [12] and [22], it might be beneficial for them 
internally to rely more heavily on a diversity of cue types early 
in a maintenance task, then gradually transition toward the 
code-level cues that developers preferred in our Fix treatment. 

Providing an “intelligent” tool that attunes itself to the stage 
of the maintenance task would require detecting a developer’s 
potentially gradual transition from learning to fixing. For ex-
ample, could an IDE detect the transition based on the devel-
oper’s initiation of non-trivial code edits? Having detected this 
transition, a tool might subtly and intelligently transition itself 
from learning-support mode to fixing-support mode. How a 
tool could effectively make such adaptations, yet also allow 
developers to access things the tool had not foreseen, is an in-
teresting open question. 

Implications for theory: IFT’s central proposition is framed 
in terms of the singular decision that a developer faces at a 
particular moment (Section II): should the developer stay in the 
current patch, navigate to another patch, or enrich the environ-
ment? Our results suggest the need for modeling of foraging at 
a higher level that spans sequences of foraging decisions, since 
we found that Learn participants were more likely to succeed 
by switching among different cue types at each decision point. 
Such research could investigate not only what tactics are em-
ployed relative to different cue types but also “meta-tactics” 
aimed at selecting an optimal tactic for a given situation in time 
(e.g., depending on whether the forager is currently trying to 
learn about or trying to fix a bug). 



V. RELATED WORK 
Studies on how developers forage for code have typically 

focused on the kinds of questions that they ask, or the kinds of 
information that they try to obtain (e.g., [16][38][41]). A recur-
ring theme from these studies is that of progression, with de-
velopers first trying to find a starting point in the code related 
to a bug or feature request, then expanding their search out-
ward as they generate and test hypotheses about how the code 
works and how to go about fixing it. The segments of code that 
trigger hypotheses and subsequent searches for further infor-
mation are sometimes called “beacons” [4], and the succession 
of searches can lead to a bottom-up or top-down comprehen-
sion of the code, depending on the programmer [40]. Once 
convinced that they have a viable approach for fixing the code, 
they make and validate the code changes. Thus, these prior 
studies have largely focused on information goals and changes 
in goals during the course of a maintenance task. In contrast, 
our study focused on how production bias affects developers’ 
foraging at turning points among competing paths. 

Other studies have examined the strengths and weaknesses 
of existing IDE tools or have evaluated new tools that support 
information foraging. Many studies noted the importance of 
search tools and call graphs (e.g., [14][17][34][39][45]) as a 
means of finding information in code. Robillard et al. particu-
larly highlighted the value of tools that aid in methodically 
exploring code, using structure-guided search, and planning 
changes prior to editing code [34]. Many recent tools and sup-
porting algorithms have been provided specifically for the 
problem of locating where in code a given piece of buggy func-
tionality is implemented. The latest approaches include integra-
tion of text and stack trace analysis [25][43], integration of 
search with navigation [12], and genetic algorithms [42] as 
well as machine learning algorithms [2][44] for dynamically 
refining and combining localization models. Our study’s re-
sults reiterate the need for diverse new tools to aid developers, 
and they provide insight into the situations in which different 
developers might benefit the most from different tools. 

Finally, several studies have investigated how people edit 
code once they have found the needed information. For exam-
ple, Ying and Robillard examined whether developers make 
edits differently depending on whether they are fixing bugs or 
adding enhancements [46]. As another example, Posnett et al. 
investigated the extent to which developers make focused pat-
terns of code edits across maintenance tasks (sometimes called 
“ownership” of code), and whether these patterns are statisti-
cally related to the resulting rates of defects [32]. In our study, 
although participants were editing at times, our research ques-
tions centered on foraging rather than on editing per se. 

VI. THREATS TO VALIDITY 
Every study has threats to validity, but we guarded against 

threats to internal validity in several ways. To help assure con-
tent validity (the extent to which all aspects of a theoretical 
concept are measured), we examined the effects of treatment 
group with respect to a broad range of IFT constructs 
(goal/patch/cue/tactic). Our inter-rater reliability was 81%–
92% on all code sets, helping to assure construct validity. To 
help assure test validity (the extent to which a measure actually 

captures what it intends to measure), we supplemented qualita-
tive analysis with quantitative analysis and carefully controlled 
for any confounding per-participant effects.  

The primary threat to external validity is that our study par-
ticipants were undergraduate computer science majors, alt-
hough all had at least 3 years of programming experience. We 
can consider them a reasonable proxy for developers with fair-
ly low experience (including interns and new hires straight out 
of college), but our findings might not generalize to developers 
with far more experience. Similarly, there is a question as to 
the generalizability of the tasks; however, fixing tasks are 
common during corrective maintenance, and software immi-
grants may be tasked with just learning about code [36]. Addi-
tionally, there is a question of generalizability to other pro-
gramming languages and IDEs, which we defer to future work.  

VII.  CONCLUSION 
The results of our empirical study show, for the first time, 

how Minimalist Learning Theory’s concept of production bias 
can influence developers’ foraging for information. Developers 
engaged with fixing the bug (and doing whatever learning they 
needed to along the way) vs. those engaged with learning 
“enough” about the bug to help someone else, differed 
considerably in their foraging: 

• Patch Types: Learn vs. Fix participants’ turning points—
should I go here or should I go there—occurred in signifi-
cantly different types of patches. Learn participants tended 
to work their way through hierarchical, table-of-contents-
like patches that made explicit information structure, 
whereas Fix participants tended to favor low-level index-
like patches that took them directly to a line of code. 

• Cue Types: Fix and Learn participants also differed signifi-
cantly in the types of cues that drew their interest during 
these foraging decisions. Learn participants followed cues 
they had seen in program output in nearly half of their nav-
igation decisions (45%, almost twice as often as Fix partic-
ipants). In contrast, Fix participants favored following cues 
inspired by source code content. 

• Foraging Tactics: Learn participants’ successful tactics 
were different from those of Fix participants. Learn partic-
ipants were more successful when switching among cue 
types in sequential decisions, whereas Fix participants 
were more successful foragers when they used the same 
cue types repeatedly over several decisions. 
As noted in the “Implications for Tools” subsections of 

Section IV, these theory-based results reveal new opportunities 
for ways tools can better enable developers to find information 
during everyday software maintenance. 
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