
To Fix or to Learn? How Production Bias Affects
Developers’ Information Foraging during Debugging

David Piorkowski1, Scott D. Fleming2, Christopher Scaffidi1, Margaret Burnett1,
Irwin Kwan1, Austin Z. Henley2, Jamie Macbeth3, Charles Hill1, Amber Horvath1

1Oregon State University
Corvallis, OR, USA

{piorkoda, cscaffid, burnett, kwan, hillc, horvatha}
@eecs.oregonstate.edu

2University of Memphis
Memphis, TN, USA

{Scott.Fleming, azhenley}
@memphis.edu

3Clemson University
Clemson, SC, USA

jmacbet
@clemson.edu

Abstract— Developers performing maintenance activities

must balance their efforts to learn the code vs. their efforts to
actually change it. This balancing act is consistent with the “pro-
duction bias” that, according to Carroll’s minimalist learning
theory, generally affects software users during everyday tasks.
This suggests that developers’ focus on efficiency should have
marked effects on how they forage for the information they think
they need to fix bugs. To investigate how developers balance fix-
ing versus learning during debugging, we conducted the first
empirical investigation of the interplay between production bias
and information foraging. Our theory-based study involved 11
participants: half tasked with fixing a bug, and half tasked with
learning enough to help someone else fix it. Despite the subtlety
of difference between their tasks, participants foraged remarka-
bly differently—making foraging decisions from different types
of “patches,” with different types of information, and succeeding
with different foraging tactics.

Keywords- debugging; information foraging; theory meets tools

I. INTRODUCTION
Software maintenance invariably requires some learning of

the current code before making changes, so as to plan correct
and efficient changes. For example, one study suggested that
methodical exploration of code prior to making maintenance
changes can cut the time of actually coding in half [34]. Be-
cause of this connection between comprehension and mainte-
nance, a wide range of tools aim at aiding program exploration
and comprehension during maintenance and evolution (e.g.,
[2][11][12][15][21][25][42][43][44]).

It is therefore troubling that a recent observational field
study of work practices revealed that “wherever possible, de-
velopers seem to prefer strategies that avoid comprehension”
of existing code [35]. Specifically, this study found that devel-
opers frequently tried to move forward with coding as quickly
as possible (what could be considered a form of satisficing
[37]), with a minimal amount of activity invested ahead of time
in exploring the code they were about to modify. Such results
are consistent with those of other studies [3][17][23].

Based on such findings, Maalej et al. concluded:

Software comprehension is a hard and time-consuming task
and consequently is avoided whenever possible. This indi-
cates that Carroll’s minimalist theory [Carroll 1998], which
suggests people put in the minimum effort to maximize

their outcome, is applicable … We think that researchers
should consider developers as users and investigate how
‘user-developers’ analyze application behavior, how they
relate observations to code, and how this behavior can be
supported by tools [23].

 This tendency of software developers to view learning as a
costly task detracting from their efficiency is called production
bias in Carroll’s theory [5][6]. To date, the effects of produc-
tion bias on developers have not been investigated in detail.

In this paper, we investigate these effects and their implica-
tions for tool design. Our investigation is grounded not only in
Carroll’s theory, but also in Information Foraging Theory (IFT)
[29]. IFT provides a conceptual framework describing how
people in an information environment, such as an IDE, seek
information. For developers faced with a bug, the information
they seek can include how to reproduce the bug, what causes
the bug, where to fix the bug, and whether similar bugs were
fixed elsewhere [23].

We performed our investigation by conducting a qualitative
laboratory study. One group of developers was tasked with
fixing a bug, whereas the other group was tasked with learning
enough about the bug to help someone else fix it. We assigned
people these differing tasks to reveal and analyze differences in
their behaviors from both an IFT and a production bias per-
spective to address four research questions:

• RQ1 (information goals): How does trying to fix a bug ver-
sus trying to learn about the bug affect the types of infor-
mation that developers seek?

• RQ2 (information patches): How does trying to fix a bug
versus trying to learn about the bug affect where in the en-
vironment developers make foraging decisions?

• RQ3 (information cues): How does trying to fix a bug ver-
sus trying to learn about the bug affect the types of cues de-
velopers attend to when making foraging decisions?

• RQ4 (foraging tactics): How does trying to fix a bug versus
trying to learn about the bug affect the tactics that develop-
ers use in making their foraging decisions?

II. BACKGROUND
Viewing developers’ code exploration during debugging

through the lens of a theory can provide a conceptual frame-

© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

work for thinking about what aspects of their behavior might
vary depending on the presence of production bias. In essence,
IFT [29] gives a meaningful way to “carve up” the information
environment and the developers’ actions within that environ-
ment, then to investigate differences among developers in
terms of how they use the environment. IFT is an appropriate
theory for this purpose because it has already proven useful for
explaining and predicting how developers find information
during maintenance, in ways beneficial to tool design (e.g.,
[8][9][10][18][19][20][28]).

IFT’s main constructs consist of a predator (a human
forager) who seeks prey (information) within an information
environment made up of information patches (such as
documents and screens of information, as in Fig. 1) connected
by links. The predator navigates among these patches by
traversing the links, which involves taking some navigation
action, such as clicking or scrolling. Each link has a cost of
traversal (the time to get from one patch to the other) that is
influenced by both system performance and the human’s
cognitive and physical speed.

The within-patch constructs consist mainly of information
features (e.g., words, phrases, and graphics), some of which
may be the prey that the predator seeks. Information features
have value, and they also have cost (e.g., time for the human to
read and process them). Some of the information features are
cues associated with outgoing links to other patches. Cues
(e.g., labels on the links) provide the predator with hints about
what information features may be found at the other end of the
link. Fig. 2 conceptually illustrates two patches with
information features, cues, and links. In modern development
environments, like Eclipse, most displayed text has some form
of clickable link (e.g., the Open Declaration shortcut on identi-
fiers in the Editor), leading to a high density of cues in such
environments.

These constructs are tied together via IFT’s central
proposition about how the predator forages for information.

The predator’s available choices at a given moment are (1) to
process information features within the current patch, (2) to
navigate to another patch via a link, or (3) to enrich the
environment, such as by decorating a patch (e.g., by annotating
it), or by creating a new patch (e.g., by querying a search
engine to create a list of search results). IFT’s central
proposition is that the predator will tend to choose the action
that maximizes the expected value of information gained per
expected cost of interaction.

However, the predator is not omniscient and may not know
the actual value and cost that a choice will yield. Thus, the
predator makes choices that follow from his/her expectations
about the value and cost. The predator may base such choices,
for example, on whatever he/she infers from the available cues.

The predator’s inferential judgment of value and cost are
captured by IFT’s final construct: information scent—that is,
the predator’s assessment of the costs vs. benefits (i.e., value)
that following a link will yield, given the cues associated with
that link. In the second choice above, navigating to another
patch via a link, the predator uses scent to decide which link to
follow. Specifically, IFT states that the predator will choose the
link with the strongest scent (greatest benefit per cost).

Although there have been a number of promising research
results that leverage IFT as the basis for models and tools (e.g.,
[7][20][27][28][31]), to date, IFT has not specified how people
will forage, or how tools should help people forage, in the face
of production bias. The theory suggests only that foraging be-
havior would change if production bias affects how people
perceive the value and cost of patches and cues (i.e., scent).
Our paper fills that gap by uncovering both whether and how
production bias’s tension of learning vs. efficiency affects
information foraging during software maintenance.

III. METHODOLOGY
To model Minimalist Learning Theory’s tension between

learning vs. “doing,” we randomly assigned each participant to
one of two treatments: Fix or Learn. We told participants in the
Fix treatment group to fix a particular bug in a program. We
told participants in the Learn treatment group to learn enough
information about that same bug to be able to on-board a
programmer new to the team—that is, enough to “help the new
programmer fix the bug.” Thus, both groups needed to find the
same information, but only the Fix group was asked to actually
fix the bug. Thus, for the Learn group, we framed learning
“enough” as an end in itself.

a" b" c"

d"

Fig. 1. An information environment (Eclipse) as a developer (predator) might
see it during debugging. Patches of information content are visible in the (a)
Package Explorer, (b) Editor, and (c) Outline View (plus a region (d) where
other patches can appear). As the blow-ups of (a) shows, each item in the
Package Explorer is an information feature and also a cue, because the item
has a link: clicking it opens a file. In (b)’s blow-up, the text “openFiles” in the
Editor is also an information feature and a cue, because it has a clickable link.

Fig. 2. Conceptual depiction of an information environment with two in-
formation patches (rounded boxes) interconnected by links (directed edges).
Each patch contains information features (hexagons), with some that are
also cues (connected to outgoing links).

 However, we did not control how much fixing or learning
participants actually did. Indeed, both treatment groups would
need to do some learning/comprehension of the buggy code,
and would have to decide when they had learned “enough.”
Also, we did not stop any participants from fixing: when Learn
participants asked if they could fix the bug, we told them to
feel free to do whatever they felt was necessary to learn what
they needed to learn.

A. Procedure
The code that both groups worked with was from the jEdit

project, an open source code editor consisting of 98,652 non-
comment lines of Java code. All participants received a copy of
bug report #3223 from jEdit’s issue-tracking system, which
described a problem with deleting “folded” code. All
participants had access to the same tools, which consisted of
the Eclipse integrated development environment and other
software commonly found on a Windows PC, including a web
browser with unrestricted access to the Internet.

Randomly dividing the 11 participants into two treatments
resulted in 6 Fix participants and 5 Learn participants. Each
participant had an individual session, lasting at most 2 hours.
Throughout the session, we collected video recordings of the
participant as well as screen-capture video. First, the
participant filled out a background questionnaire, and we
briefly explained what they should do (to learn “enough” or to
fix, depending on treatment). Next, the participant worked for
30 minutes while “talking aloud.”

Participants’ foraging decisions were the moments of trade-
off (e.g., forage to fix, to learn this, to learn that, etc.). Thus,
following a short break we conducted a semi-structured
retrospective interview with each participant by playing back
all of the screen-capture video, then asking why the participant
made each foraging decision we observed and what
information was learned after making that foraging decision.

B. Participants
The participants were computer science students with

software engineering experience. All participants had 3–7
years of programming experience (mean: 4 years). All had 1–7
years of Java programming experience (mean: 3 years), and all
were familiar with Eclipse. They were 20–30 years of age; 9
were males and 2 were females.

C. Qualitative Analysis Methods
We used a multi-phase qualitative coding process to

analyze participants’ information foraging behavior, as
depicted in Fig. 3. For each coding phase, after two researchers
developed and refined the rules for each code set, they
independently coded the same 20% of the data (at least). We
then calculated inter-rater reliability using the Jaccard index.
Our inter-rater reliability was 81%–92% on all code sets.
Given this high level of reliability, the two researchers then
split up the remaining data to code independently.

1) Code set A: Participants’ foraging decisions (RQ1–4)
We first focused on participants’ foraging decisions—the

moments they explicitly chose one patch over another (Fig.

3A-i). We coded a foraging decision (1) if the participant
verbalized that he/she was making a decision between visiting
two or more patches (e.g., Java methods), (2) if the
participant’s mouse movement included hesitation over two or
more hyperlinks from a list (e.g., as in search results), or (3) if
the participant scrolled between two or more methods while
deciding which to investigate next.

We then verified our decision codes using the retrospective
interviews (Fig. 3A-ii). Specifically, after we coded the
foraging decisions from the videos, we then checked what each
participant had said during the interview. If he/she stated that
no foraging decision had occurred in a place where we had a
coded one, we removed the code. If during the interview, the
participant pointed out a foraging decision that we had not
coded, we added it. One example was when a participant
paused to consider which method to investigate next without
speaking or moving the mouse. If the interviewer did not ask a
participant about an instance that we later identified as a
foraging decision, we let our code stand.

2) Code set B: Participants’ information goal types (RQ1)
For each foraging decision, we then coded the participant’s

information goal type (Fig. 3B). To identify participants’
information goals as they foraged, we coded participants’ in-
formation goals using 44 previously documented questions
developers ask [38] (Fig. 3B-i). For the purpose of analysis, we
used the four categories that Sillito et al. grouped the questions
into. We chose this code set because it was a good fit for the
program-debugging domain and was consistent with
information goals reported in other studies [9][19][28][30]. We
then mapped the goals to corresponding foraging decisions
whenever participants said that a foraging decision was
connected to a particular information goal (Fig. 3B-ii).

3) Code set C: Participants’ cues (RQ3)
For each foraging decision, we also coded the types of cues

the participant considered when making the decision (Fig. 3C).
Recall that a cue acts as a signpost, providing hints as to the
information at the end of a link. Since no existing cues code set
was available, two researchers iteratively developed coding
rules for the types of cues to which participants attended based
on their verbalizations. That code set is detailed with the RQ3
results (Section IV.C) for clarity of presentation.

4) Code set D: Participants’ foraging successes (RQ4)
We coded the outcome of a foraging decision as successful

if the participant said that his/her information goal was

Code%par)cipants’%foraging%decisions%
i.  Code%task%video%
ii.  Update%codes%based%on%retrospec)ve%

A"

Code%par)cipants’%foraging%goals%
i.  Code%all%goals%during%task%
ii.  Connect%goal%to%decision%%

B"
Code%cues%informing%
par)cipants’%decisions%

C"

Code%par)cipants’%foraging%successes%
D"

Fig. 3. Our multi-phase qualitative coding process.

fulfilled, as unsuccessful if the participant said it was not, or as
unknown if the participant gave no indication (Fig. 3D).

5) Objective categorizations
In addition to the above subjective code sets, we were able

to objectively derive (thus with 100% reliability) two
categorizations directly from the data: patch types (RQ2) and
foraging tactics (RQ4). We detail these categorizations in their
associated results sections.

D. Statistical Analysis Methods
Although it is atypical to statistically analyze qualitative

talk-aloud data, we were able to obtain enough data to allow
quantitative analysis as well. Our statistical analysis investigat-
ed whether participants in the two groups had different infor-
mation goals (RQ1), made decisions in different patch types
(RQ2), relied on different cues (RQ3), and followed different
tactics (RQ4).

The simplest analysis approach would have been to use chi-
squared tests—for example, to construct a two-factor table of
treatment group versus patch type, compute for each table cell
the number of decision events from the corresponding treat-
ment group and patch type, and then to use the chi-squared test
to test the null hypothesis that treatment had no effect. Unfor-
tunately, this simplistic approach would fail to account for the
fact that, within a given participant, navigation events are not
statistically independent.

Therefore, we instead relied on a three-factor table of the
participant identity, the treatment group, and the IFT factor of
interest (i.e., goal/patch/cue/tactic). Since the chi-squared test
does not apply to three-factor designs, we used the well-
established method of log-linear transformation followed by
analysis of residual deviance [1], which yields a chi-squared
statistic suitable for computing a valid p value. Even though we
had only 11 participants, we had adequate statistical power
because our unit of analysis with this technique is not
participants, but rather decision points (81 total).

IV. RESULTS
We report the results for each research question in turn. In

the following, Png denotes the participant with ID n in
treatment g (e.g., P9F is Participant #9 in the Fix group).

A. RQ1. What Shall I Look For? Participants’ Goals
For RQ1, participants’ information goals, we coded their

goal-related verbalizations around each decision point (code
sets A and B in the previous section). Statistically, Fix and
Learn participants’ information goal types did not differ
significantly (Analysis of deviance, χ2(4)=7.53, p=0.11).
Qualitatively, the Fix participants’ and Learn participants’
goals also seemed similar. For example, participants in both
treatments looked for the “delete lines” menu-item:

P2F: I’m going to search for that delete lines thing in the
code to see what it does.

P10F: So I can search for that text. Delete lines.
P4L: Delete lines. I’m searching for delete lines.

P11L: Okay I should be looking for this text (delete lines).
How do I find this text?
This lack of a statistical difference in information goals

suggests two possible interpretations. If there was in fact no
difference, then differences between the groups’ foraging be-
havior reported in the upcoming sections occurred despite there
being no difference in the participants’ information goals. On
the other hand, if there was a marginal difference, then it adds
to differences reported in the upcoming sections.

B. RQ2. Turning Points: The Patches from which
Participants Made Navigation Decisions
A foraging decision among multiple cues is a turning point:

should I go to A to fix something, to B to learn something
about the code, or to C to learn something different? To
address RQ2, we analyzed the patches at which each of these
turning points occured.

Toward that end, we operationalized IFT’s patch construct
such that each view (sub-window) in an Eclipse window and
each jEdit window (i.e., the program with the bug) was a patch
type, containing one or more patches. For example, Fig. 1
depicts an Eclipse window with three patch types, each
containing at least one patch .

Table 1 shows the types of patches and characterizes the
content each type offers. For example, Package Explorer
patches (e.g., Fig 1a) give high-level structural overviews of
the code, whereas Stack Trace patches (e.g., Fig. 4) give links
to low-level code locations along with an execution path that
produced an error (i.e., a thrown exception), and Search Result
patches (e.g., Fig. 5) give a list of navigable search results.
Table 1 only shows patches within the IDE due to a lack of
foraging outside of Eclipse. (The exceptions were P2L, P5L,
P9F, who briefly used a web browser.) Patches may also exist
elswhere, but we did not include them in Table 1.

With these patch types, we analyzed participants’
navigation decisions (Section III.C.1) among the patches.
Because each navigation decision by a forager had a start and a
destination, there are two patches of potential interest for each
decision: the starting patch and the destination patch.

For example, a programmer might be reading in the
Package Explorer view (Fig. 1a), and make a navigation
decision, clicking on one of the hyperlinked items in the view.
As a result, the Editor (Fig. 1b) would automatically open a file
and scroll to display a particular line of code. In this example,
the starting patch was in the Package Explorer and the
destination patch was in the Editor.

The links provided by Eclipse views predominantly lead to
Eclipse’s editor view (as destination), so it is not surprising that
most (76%) of navigation decisions led to the Editor,
regardless of treatment group. So the two treatment groups did
not differ in their decisions’ destination patch types.

However, as shown in Fig. 6, Fix and Learn participants
demonstrated significant differences in the starting patch types,
i.e., those from which they made navigation decisions
(Analysis of deviance, χ2(11)=28.8, p=0.002).

Specifically, Learn participants tended to make navigation
decisions in patches that were like the table of contents (ToC)
of a book: Package Explorer and Search Results patches (e.g.,
Fig. 1a and Fig. 5, respectively). These patches were ToC-like
because the information they contained described the hierar-
chical structure of the code components (i.e., the chapters and
sections of the book), and the links connected to code elements
at the granularity of components. Although Search Results
patches might not immediately seem ToC-like, their results
were presented as a structural hierarchy similar to Package
Explorer patches (i.e., with hierarchical package and class file
nodes that participants had to expand to reveal their contents).

In contrast to the Learn participants, Fix participants tended
to make navigation decisions in patches that were like the in-
dex of a book: Stack Trace patches (e.g., Fig. 4). Like an index,
Stack Trace patches contained a flat (non-hierarchical) list of
elements, and their links connected to individual lines of code.
Unlike Search Results and Package Explorer patches, these
index-like patches provided few cues regarding how destina-
tion patches were embedded within the context of the overall
code structure.

TABLE 1. TYPES OF PATCHES IN WHICH PARTICIPANTS MADE FORAGING
DECISIONS. THE RIGHTMOST COLUMN IS THE NUMBER OF FORAGING

DECISIONS MADE FROM THAT PATCH TYPE.

Patch Type Information and Navigational Links #

Editor
Provides a listing of the code in a file. Identifiers in
the code are linked to associated Call Hierarchy
and/or Search Results patches. Example in Fig. 1b.

37

Stack
Trace

Provides a list of code locations along an execution
path that produced an exception (i.e., internal error)
in the running jEdit program. List items are linked
to the associated lines of code (opened in an Editor
patch). Example in Fig. 4.

23

Package
Explorer

Provides a hierarchical list of the components (e.g.,
packages, classes, fields, methods) in the project.
List items are linked to associated lines of code
(opened in an Editor patch). Example in Fig. 1a.

18

Search
Results

Provides a generated list of occurrences of user-
entered text or a user-selected identifier in an Editor
patch. List items are linked to the associated lines of
code (opened in an Editor patch). Example in Fig.
5.

18

Call
Hierarchy

Provides a hierarchical list of the invocations of a
programmer-selected method (i.e., subroutine). List
items are linked to the associated lines in code files
(opened in an Editor patch).

3

jEdit
Running
Instance

Provides the interface of the running jEdit program
being worked on. Such patches do not provide any
direct navigational links to other types of patches.

2

Open
Resource

Provides a list of all classes in the project filtered
and sorted based on a programmer-entered text
query. List items are linked to the associated lines
of code (opened in an Editor patch).

2

Outline
View

Provides a hierarchical list of the components (e.g.,
classes, fields, methods) of the file in the Editor
patch. List items are linked to the associated lines of
code (opened in the Editor). Example in Fig. 1c.

2

Variables
View

Provides a list of variables and associated values at
a given point in the execution of the jEdit program.
Such patches do not provide any direct navigational
links to other types of patches.

1

Fig.4. Example Stack Trace patch (Fix Participant P3F).

Fig.5. Example Search Results patch.

0%#

10%#

20%#

30%#

40%#

50%#
Editor#

Stack#Trace#

Search#
Results#

Package#
Explorer#

Fix$

Learn$

(5#fix,#5#learn)#

(4#fix,#2#learn)#(4#fix,#4#learn)#

(2#fix,#3#learn)#

Fig.6. The proportion of patches where each treatment’s participants made
foraging decisions (showing the 4 most-often used patch types). Percentages
indicate the number of navigation decisions in a patch type divided by the
total number of navigation decisions (per-treatment). In parentheses is the
number of participants in each treatment that made at least one navigation
decision in that patch type.

Fig.7. Learn Participant P5L engaged in considerable within-patch foraging
for code-structure information using a ToC-like Search Results patch. Each
box from left to right shows a snapshot of the patch. The highlighted areas
show the sequence of sub-items that P5L expanded.

For example, consider two participants: Learn Participant
P5L and Fix Participant P3F. P5L foraged extensively within a
ToC-like Search Results patch. As Fig. 7 depicts, he stepped
sequentially through the code-hierarchy tree, expanding many
elements to reveal their inner structure. In contrast, P3F made
considerable use of an index-like Stack Trace patch for be-
tween-patch foraging, as Fig. 8 illustrates. Whereas P5L was
concerned with the code’s hierarchical structure, P3F preferred
to bypass the structure, linking into the middle of structural
components to inspect individual lines of code.

P3F in fact commented explicitly on a desire to avoid cer-
tain types of patches…

P3F: Since [the bug is] something that I'm trying to fix in a
hurry, I would prefer to do as little of that really high level
architectural stuff.

Implications for tools: When developing a new tool, there
is a temptation simply to display its results as a new view with-
in the IDE (such as a new View in Eclipse), but our results
suggest that this decision should not be made lightly. If the
information is hierarchical (i.e., ToC-like), such a new view
could be a good fit for developers while they are in “learn”
mode, On the other hand, developers in “fix” mode might be
better served by the tool enhancing code-level patches with its
new information. For example, in Eclipse, this might be
achieved adding iconography within the source code editor.

Implications for theory: The Learn participants’ tendency
toward patches that convey high-level structure suggests that
they assessed cost/benefit differently than Fix participants did.
Participants assigned to the Learn treatment might have associ-
ated a higher level of benefit to these patches, versus the Fix
participants who might have associated more benefit with get-
ting to the code-level patches where they would need to make
edits in order to fix the bug. Our results suggest the need for
extending IFT with more detailed scent models that more pre-
cisely take into account the developer’s particular situation.

C. RQ3. Turning Point “Why”s: Cue Types as Sources of
Inspiration
A turning point in navigation is not likely to occur in a

vacuum: something the developer has seen often inspires their

ensuing decisions. Thus, for RQ3, the cue types we coded
(Table 2) pertain not to the content of the cues, but rather, to
the source of inspiration causing the participant’s attention to
be drawn to that cue.

For example, as Fig. 9 shows, P5L made a navigation
decision in an Editor patch (c), and as he did so, indicated that
his attention was on cues that were “something like a click on a
menu button” (d). The source for this inspiration came from a
preceding visit to a jEdit Output patch (a) in which he used the
jEdit menu item to trigger a failure caused by the bug (b).
Thus, the cue in this case was of type Output-inspired.

Applying these cue types, our results revealed marked
differences in the cues to which Fix and Learn participants
attended. A log-linear analysis of the cue-type frequencies
showed a significant difference (Analysis of deviance,
χ2(19)=33.3, p=0.02). Fig. 10 highlights these differences for
the most-attended cue types.

One difference apparent in Fig. 10 is that the Learn
participants particularly attended to Output-Inspired cues,
citing Output-Inspired cues in about 45% of their decisions,
compared to only 28% for Fix participants. One possible
reason for this tendency was that many Learn participants
followed a bug-reproduction-driven approach in which they
followed up on the application’s expected or observed output
from the very outset of their session. For example, Learn
participants P6L, P7L, and P11L all began by replaying the
error in jEdit, and then attending to cues inspired by the

TABLE 2. THE CUE TYPES TO WHICH PARTICIPANTS ATTENDED WHEN MAKING
FORAGING DECISIONS. THE RIGHTMOST COLUMN IS THE NUMBER OF FORAGING

DECISIONS IN WHICH PARTICIPANTS ATTENDED THAT CUE TYPE.

Cue Type Definition: Participant utterances about… #

Output-Inspired
… cues related to jEdit output they had seen,
such as thrown exceptions (errors) or GUI
widget labels

44

Domain Text … cues related to text they had seen specific
to jEdit’s domain, such as “folding text” 35

Level of
Abstraction

… cues related to the level of abstraction of
the a code location they had seen; e.g., “This
method is too specific”

21

Source-Code
Content Inspired

… cues related to source code they had seen,
such as relating to a particular variable or
parameter, or reminiscent of a code comment

19

Position
… cues related to the position of non-code
elements they had seen on screen, such as the
top item in a list of search results

8

Familiarity
… cues that seemed familiar to the participant;
e.g., “I’ve seen this before” or “This looks
familiar”.

6

File Type … cues related to the type of a file they had
seen, such as Java vs. XML 5

Documentation-
Inspired

… cues related to external documentation they
had seen, such as the bug report 2

Source-Code
Appearance

Inspired

… cues related to how source code they had
seen appears visually, such “large” methods or
“nearby” methods

2

Contrasts
… cues related to a contrast among items they
had seen, such a method being from a differ-
ent package than the others in a list

2

!795

"152
"827

Fig.8. Fix Participant P3F used the Stack Trace patch from Fig. 4 as an index
to forage for particular lines of code in a variety of Editor patches. Each box
from left to right shows a snapshot of a patch, alternating between the Stack
Trace patch and Editor patches. The arrows show the links from the Stack
Trace Patch and the destination lines of code within the Editor patches. In the
Editor patches, the shaded areas were never visible to P3F (i.e., off screen).

relevant GUI elements (e.g., menu items). Although Fix
participants also sometimes attempted to reproduce bugs, they
did so much less than Learn participants.

The sources of output that inspired Fix and Learn
participants also differed. Whereas Learn participants primarily
found inspiration in the program’s visual output (i.e., from

running jEdit), Fix participants predominantly attended to
Output-Inspired cues that originated in a Stack Trace patch or
Variables patch, which were more closely related to low-level
code details. In fact, only one Fix participant, P2F, had Output-
Inspired cues that were inspired by running jEdit.

Fix participants’ foraging stayed “closer to the code” than
that of Learn participants in two additional ways, as well. First,
as shown in Fig. 10, Fix participants attended to Source Code-
Content Inspired cues more than Learn participants (approxi-
mately 21% for Fix participants versus 8% for Learn partici-
pants). Second, all but two of the instances when Fix partici-
pants attended to this cue type occurred in an Editor patch. In
contrast, Learn participants attended to Source Code-Content
Inspired cues over a wider spread of patch types, including
high-level patch types such as Package Explorer and Outline
View, as well as low-level patch types like Editor and Stack
Trace. Thus, although both treatments sometimes attended to
cues inspired by source code they had seen, Fix participants
attended to those cues mainly while the source code, but Learn
participants tended to those cues more broadly, even in patches
not directly related to the details found in the source code.

Implications for tools: These results highlight the fact that
developers might benefit from different cue-enhancement tools
depending on whether they are trying to fix or learn about
bugs. For example, the behavior of developers in the Learn
treatment suggests that they might especially benefit from tools
oriented toward augmenting Output-Inspired cues. An example
of such a tool is the Whyline [13], which offers annotated, nav-
igable links directly from program output to the code that gen-
erated that output. On the other hand, the behavior of develop-
ers in the Fix treatment suggests that they might particularly
value tools that augment Source Code-Content Inspired cues.
For example, a tool for Eclipse might automatically annotate
the code with annotations or links related to associated bug
reports (e.g., as proposed in [26], figure 3).

For both Fix and Learn developers, Level of Abstraction
and Domain Text cues played an important role. Most IDEs
and languages already provide support for viewing the level of
abstraction associated with a particular piece of code (method,
class, package, etc.) and for navigating among different levels
of abstraction. Research has also investigated how to map from
concerns (i.e., domain requirements such as jEdit’s text-folding
functionality) to specific locations in the code [24], as well as
how to analyze code and automatically generate natural lan-
guage text describing the corresponding concerns [33]. Our
results reiterate the potential value of such tools and emphasize
the need for getting them into everyday practice by developers.

Implications for theory: Our results suggest a possible new
direction for IFT. Prior IFT research has often operationalized
cue content through the use word-similarity metrics like TF-
IDF (e.g., [18][28]). Our findings are consistent with this
approach: several commonly attended types of cues were text
based (e.g., Source Code Content Inspired and Domain Text).
However, our cue types also revealed differences between the
treatments without considering cue content. Thus, our
inspiration-based cue types were able reveal effects on
foraging that cue content alone might not have. Future IFT-
based models of cues should take into account not only the

(a)$Navigates$to$jEdit$Patch$

(b)$Triggers$bug$with$
menu$bu:on$

(c)$Navigates$to$Editor$Patch$

(d)$While$choosingamethodtoinspect:$“Maybe$…$
something$like$a$click$onamenu$bu:on.”$

Fig.9. Episode in which P5L attended to an Output-Inspired cue. The source
of the inspiration came from jEdit output (a and b). P5L attended to the Out-
put-Inspired Cue (“Maybe … something like click on a menu button”) while
choosing code to inspect in an Editor patch (c and d).

0%#
10%#
20%#
30%#
40%#
50%#

Source/Code#
Content#

Domain#Text#

Output#
Inspired#

Level#of#
AbstracDon#

Learn&

Fix&

(6#fix,#5#learn)#

(4#fix,#5#learn)#

(5#fix,#3#learn)#

(4#fix,#4#learn)#

Fig. 10. The proportion of cue types each treatment’s participants attended to
at each navigation decision, showing the four most-often attended cue types.
Percentages indicate the number of cue types attended divided by the total
number of cue types attended to (per treatment). In parentheses is the number
of participants in each treatment that attended to that cue type at least once.
Fix and Learn participants attended to different cue types for foraging deci-
sions. Shown are the percentages of each group’s total number of cue types
talked about when they decided among competing cues for the most men-
tioned cue types.

TABLE 3. PARTICIPANT USAGE AND SUCCESS RATES FOR THE FAVORITES AND
SWITCHING TACTICS.

Treatment Participant Most-Used
Tactic

Success Rate
Favorites Switching

Fix

P2F Favorites 1/7 0/2
P3F Favorites 1/6 0/2
P8F Favorites 2/5 0/2
P9F Switching 1/1 1/4

P10F Favorites 0/3 0/1
P12F Both Equally 0/1 0/1

Total instances of success: 5/23 (22%) 1/12 (8%)
Total participants who had success: 4/6 (67%) 1/6 (20%)

Learn

P4L Switching 0/2 2/4
P5L Favorites 1/5 0/0
P6L Favorites 0/4 0/2
P7L Both Equally 0/2 2/2

P11L Favorites 0/4 0/1
Total instances of success: 1/17 (6%) 4/9 (44%)

Total participants who had success: 1/5 (20%) 2/5 (40%)

content of cues but also the type of these cues when generating
predictions about developers’ foraging behavior.

D. RQ4. How Should I Go About Foraging? Participants’
Foraging Tactics
For RQ4 (Fix versus Learn participants’ foraging tactics),

participants used two distinct foraging tactics in deciding
which cues to attend to: a Favorites tactic and a Switching
tactic. Using the Favorites tactic, a participant would, from one
foraging decision to the next, attend to cues sharing at least
some of the same cue types. In contrast, a participant using the
Switching tactic would, from one foraging decision to the next,
attend to cues of entirely different types.

We counted the Favorites and Switching tactics using
discrete, objective patterns in the sequence of cue types to
which each participant attended. In particular, if the set of cue
types attended for one foraging decision was disjoint from the
set attended for the next decision, we counted it as an instance
of the Switching tactic. If the sets intersected, we counted it as
an instance of the Favorites tactic.

To illustrate the difference in these tactics, consider Fix
participants P10F and P9F. P10F used the Favorites tactic
heavily, attending to cues of Domain Text type for every
foraging decision, continually asking throughout the session
where “delete line” was located. In contrast, Fix Participant
P9F attended to Familiarity type cues in one successful
foraging decision, but then switched to the Source Code-
Content Inspired and Domain Text cue types in his next
foraging decision only one and a half minutes later.

At first glance, little difference was apparent between the
tactic participants used (Table 3, “Most-Used” column). Most
participants, regardless of treatment, tended toward the
Favorites tactic. Analysis of their activity showed a suggestive,
but non-significant difference between treatments (Analysis of
deviance, χ2(3)=5.93, p=0.12).

However, a difference between treatments becomes appar-
ent with situations where the outcome of a foraging action was

successful (code set D in Section III.C). In these situations, Fix
participants were equally likely to be successful regardless of
whether they used the Favorites tactic or the Switching tactic
(Analysis of deviance, χ2(1)=1.10, p=0.29). In contrast, Learn
participants were significantly more likely to be successful
when they used the Switching tactic (Analysis of deviance,
χ2(1)=5.49, p=0.019).

Thus, not only did the Fix and Learn participants make for-
aging decisions in different types of patches (RQ2) and while
attending to different types of cues (RQ3), from the RQ4 anal-
ysis in this section, we know they also differed in which forag-
ing tactics most strongly associated with whether or not their
decisions yielded success.

Implications for tools: Many studies (Section V) have high-
lighted the gradual but non-monotonic transition during a
maintenance task from exploring code to modifying code, po-
tentially implying a corresponding shift from behaving as if in
our Learn treatment to behaving as if in our Fix treatment. It is
not known whether such transitions affect the level of produc-
tion bias developers feel (or, conversely, whether developers as
individuals have a more permanent tendency toward learning
or fixing). But, to the extent that developers do transition from
one mode to the other during a maintenance task, then they
may benefit from a corresponding transition in tactics.

Given our result that Switching among cue types was more
strongly associated with success in the Learn treatment than in
the Fix treatment, it is possible that it would be beneficial for
tools likewise to emphasize a diversity of cue types early in a
development task. For example, when new prototype tools
generate search results or navigation recommendations such as
those described in [12] and [22], it might be beneficial for them
internally to rely more heavily on a diversity of cue types early
in a maintenance task, then gradually transition toward the
code-level cues that developers preferred in our Fix treatment.

Providing an “intelligent” tool that attunes itself to the stage
of the maintenance task would require detecting a developer’s
potentially gradual transition from learning to fixing. For ex-
ample, could an IDE detect the transition based on the devel-
oper’s initiation of non-trivial code edits? Having detected this
transition, a tool might subtly and intelligently transition itself
from learning-support mode to fixing-support mode. How a
tool could effectively make such adaptations, yet also allow
developers to access things the tool had not foreseen, is an in-
teresting open question.

Implications for theory: IFT’s central proposition is framed
in terms of the singular decision that a developer faces at a
particular moment (Section II): should the developer stay in the
current patch, navigate to another patch, or enrich the environ-
ment? Our results suggest the need for modeling of foraging at
a higher level that spans sequences of foraging decisions, since
we found that Learn participants were more likely to succeed
by switching among different cue types at each decision point.
Such research could investigate not only what tactics are em-
ployed relative to different cue types but also “meta-tactics”
aimed at selecting an optimal tactic for a given situation in time
(e.g., depending on whether the forager is currently trying to
learn about or trying to fix a bug).

V. RELATED WORK
Studies on how developers forage for code have typically

focused on the kinds of questions that they ask, or the kinds of
information that they try to obtain (e.g., [16][38][41]). A recur-
ring theme from these studies is that of progression, with de-
velopers first trying to find a starting point in the code related
to a bug or feature request, then expanding their search out-
ward as they generate and test hypotheses about how the code
works and how to go about fixing it. The segments of code that
trigger hypotheses and subsequent searches for further infor-
mation are sometimes called “beacons” [4], and the succession
of searches can lead to a bottom-up or top-down comprehen-
sion of the code, depending on the programmer [40]. Once
convinced that they have a viable approach for fixing the code,
they make and validate the code changes. Thus, these prior
studies have largely focused on information goals and changes
in goals during the course of a maintenance task. In contrast,
our study focused on how production bias affects developers’
foraging at turning points among competing paths.

Other studies have examined the strengths and weaknesses
of existing IDE tools or have evaluated new tools that support
information foraging. Many studies noted the importance of
search tools and call graphs (e.g., [14][17][34][39][45]) as a
means of finding information in code. Robillard et al. particu-
larly highlighted the value of tools that aid in methodically
exploring code, using structure-guided search, and planning
changes prior to editing code [34]. Many recent tools and sup-
porting algorithms have been provided specifically for the
problem of locating where in code a given piece of buggy func-
tionality is implemented. The latest approaches include integra-
tion of text and stack trace analysis [25][43], integration of
search with navigation [12], and genetic algorithms [42] as
well as machine learning algorithms [2][44] for dynamically
refining and combining localization models. Our study’s re-
sults reiterate the need for diverse new tools to aid developers,
and they provide insight into the situations in which different
developers might benefit the most from different tools.

Finally, several studies have investigated how people edit
code once they have found the needed information. For exam-
ple, Ying and Robillard examined whether developers make
edits differently depending on whether they are fixing bugs or
adding enhancements [46]. As another example, Posnett et al.
investigated the extent to which developers make focused pat-
terns of code edits across maintenance tasks (sometimes called
“ownership” of code), and whether these patterns are statisti-
cally related to the resulting rates of defects [32]. In our study,
although participants were editing at times, our research ques-
tions centered on foraging rather than on editing per se.

VI. THREATS TO VALIDITY
Every study has threats to validity, but we guarded against

threats to internal validity in several ways. To help assure con-
tent validity (the extent to which all aspects of a theoretical
concept are measured), we examined the effects of treatment
group with respect to a broad range of IFT constructs
(goal/patch/cue/tactic). Our inter-rater reliability was 81%–
92% on all code sets, helping to assure construct validity. To
help assure test validity (the extent to which a measure actually

captures what it intends to measure), we supplemented qualita-
tive analysis with quantitative analysis and carefully controlled
for any confounding per-participant effects.

The primary threat to external validity is that our study par-
ticipants were undergraduate computer science majors, alt-
hough all had at least 3 years of programming experience. We
can consider them a reasonable proxy for developers with fair-
ly low experience (including interns and new hires straight out
of college), but our findings might not generalize to developers
with far more experience. Similarly, there is a question as to
the generalizability of the tasks; however, fixing tasks are
common during corrective maintenance, and software immi-
grants may be tasked with just learning about code [36]. Addi-
tionally, there is a question of generalizability to other pro-
gramming languages and IDEs, which we defer to future work.

VII. CONCLUSION
The results of our empirical study show, for the first time,

how Minimalist Learning Theory’s concept of production bias
can influence developers’ foraging for information. Developers
engaged with fixing the bug (and doing whatever learning they
needed to along the way) vs. those engaged with learning
“enough” about the bug to help someone else, differed
considerably in their foraging:

• Patch Types: Learn vs. Fix participants’ turning points—
should I go here or should I go there—occurred in signifi-
cantly different types of patches. Learn participants tended
to work their way through hierarchical, table-of-contents-
like patches that made explicit information structure,
whereas Fix participants tended to favor low-level index-
like patches that took them directly to a line of code.

• Cue Types: Fix and Learn participants also differed signifi-
cantly in the types of cues that drew their interest during
these foraging decisions. Learn participants followed cues
they had seen in program output in nearly half of their nav-
igation decisions (45%, almost twice as often as Fix partic-
ipants). In contrast, Fix participants favored following cues
inspired by source code content.

• Foraging Tactics: Learn participants’ successful tactics
were different from those of Fix participants. Learn partic-
ipants were more successful when switching among cue
types in sequential decisions, whereas Fix participants
were more successful foragers when they used the same
cue types repeatedly over several decisions.
As noted in the “Implications for Tools” subsections of

Section IV, these theory-based results reveal new opportunities
for ways tools can better enable developers to find information
during everyday software maintenance.

ACKNOWLEDGMENT
This material was supported in part by the National Science

Foundation under Grants 1302113, 1302117, and 1314384, and
by David Piorkowski’s IBM PhD Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsor.

REFERENCES
[1] Agresti, A. (2012) Categorical Data Analysis, Wiley.
[2] Binkley, D., and Lawrie, D. (2014) Learning to rank improves IR in SE.

IEEE Intl. Conf. Soft. Maint. and Evolution, 441-445.
[3] Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., and Klemmer, S.

(2009) Two studies of opportunistic programming: Interleaving web
foraging, learning, and writing code. ACM Conf. Human Factors in Comp.
Sys., 1589-1598.

[4] Brooks, R. (1983) Towards a theory of the comprehension of computer
programs. Intl. Journal of Man-Machine Studies. 18(6), 543-554.

[5] Carroll, J. (1998) Minimalism Beyond the Nurnberg Funnel, MIT Press.
[6] Carroll, J., and Rosson, M. (1987) Paradox of the active user. Interfacing

Thought: Cognitive Aspects of Human-Comp. Interaction, 80-111.
[7] Chi, E., Pirolli, P., Chen, K., and Pitkow, J. (2001) Using information

scent to model user information needs and actions and the web. ACM
Conf. Human Factors in Comp. Sys., 490-497.

[8] Fleming, S., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R.,
Lawrance, J., and Kwan, I. (2013) An information foraging theory
perspective on tools for debugging, refactoring, and reuse tasks. ACM
Trans. Soft. Engr. and Method., 22(2), 14:1–14:41.

[9] Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., and
Kwan, I. (2012) End-user debugging strategies: A sensemaking
perspective. ACM Trans. Comp.-Human Interaction, 19(1), 5:1–5:28.

[10] Henley, A., and Fleming, S. (2014) The Patchworks code editor: Toward
faster navigation with less code arranging and fewer navigation mistakes.
ACM Conf. Human Factors in Comp. Sys., 2511-2520.

[11] Karrer, T., Kramer, J., Diehl, J., Hartmann, B., and Borchers, J. (2011)
Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency. ACM Symp. User Interface Soft. and Technology, 217-224.

[12] Kevic, K., Fritz, T., and Shepherd, D. (2014) CoMoGen: An approach to
locate relevant task context by combining search and navigation. IEEE
Intl. Conf. Soft. Maint. and Evolution, 61-70.

[13] Ko, A., and Myers, B. (2008) Debugging reinvented. ACM/IEEE Intl.
Conf. Soft. Eng, 301-310.

[14] Ko, A., Myers, B., Coblenz, M., and Aung, H. (2006) An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Trans. Soft. Engr., 32(12), 971-
987.

[15] Kramer, J., Karrer, T., Kurz, J., Wittenhagen, M., and Borchers, J. (2013)
How tools in IDEs shape developers' navigation behavior. ACM Conf.
Human Factors in Comp. Sys., 3073-3082.

[16] LaToza, T., and Myers, B. (2010) Developers ask reachability questions.
ACM/IEEE Intl. Conf. Soft. Engr., 185-194.

[17] LaToza, T., Venolia, G., and DeLine, R. (2006) Maintaining mental
models: A study of developer work habits. ACM/IEEE Intl. Conf. Soft.
Engr., 492-501.

[18] Lawrance, J., Bellamy, R., Burnett, M., and Rector, K. (2008) Using
information scent to model the dynamic foraging behavior of programmers
in maintenance tasks. ACM Conf. Human Factors in Comp. Sys., 1323-
1332.

[19] Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., and
Fleming, S. (2013) How programmers debug, revisited: An information
foraging theory perspective. IEEE Trans. Soft. Eng, 39(2), 197-215.

[20] Lawrance, J., Burnett, M., Bellamy, R., Bogart, C., and Swart, C. (2010)
Reactive information foraging for evolving goals. ACM Conf. Human
Factors in Comp. Sys., 25-34.

[21] Lieber, T., Brandt, J., and Miller, R. (2014) Addressing misconceptions
about code with always-on programming visualizations. ACM Conf.
Human Factors in Comp. Sys., 2481-2490.

[22] Maalej, W., Fritz, T., and Robbes, R. (2014) Collecting and processing
interaction data for recommendation systems. Recommendation Sys. in
Soft. Engr., 173-197.

[23] Maalej, W., Tiarks, R., Roehm, T., and Koschke, R. (2014) On the
comprehension of program comprehension. ACM Trans. Soft. Engr. and
Method., 23(4), 31:1-31:38.

[24] Majid, I., and Robillard, M. (2005) NaCIN: An eclipse plug-in for program
navigation-based concern inference. OOPSLA Workshop on Eclipse
Technology Exchange, 70-74.

[25] Moreno, L., Treadway, J., Marcus, A., and Shen, W. (2014) On the use of
stack traces to improve text retrieval-based bug localization. IEEE Intl.
Conf. Soft. Maint. and Evolution, 151-160.

[26] Murphy, G., Kersten, M., Robillard, M., and Cubranic, D. (2005) The
emergent structure of development tasks. ECOOP Conf. Object-Oriented
Prog., 33-48.

[27] Olston, C., and Chi, E. (2003) ScentTrails: Integrating browsing and
searching on the web. ACM Trans. Comp.-Human Interaction, 10(3), 177-
197.

[28] Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C., Burnett, M., John, B.,
Bellamy, R., and Swart, C. (2012) Reactive information foraging: An
empirical investigation of theory-based recommender systems for
programmers. ACM Conf. Human Factors in Comp. Sys., 1471-1480.

[29] Pirolli, P., and Card, S. (1995) Information foraging in information access
environments. ACM Conf. Human Factors in Comp. Sys., 51-58.

[30] Pirolli, P., and Card, S. (2005) The sensemaking process and leverage
points for analyst technology as identified through cognitive task analysis.
Intl. Conf. Intelligence Analysis, 2-4.

[31] Pirolli, P., Schank, P., Hearst, M., and Diehl, C. (1996) Scatter/gather
browsing communicates the topic structure of a very large text collection.
ACM Conf. Human Factors in Comp. Sys., 213-220.

[32] Posnett, D., D'Souza, R., Devanbu, P., and Filkov, V. (2013) Dual
ecological measures of focus in software development. ACM/IEEE Intl.
Conf. Soft. Engr., 452-461.

[33] Rastkar, S., Murphy, G., and Bradley, A. (2011) Generating natural
language summaries for crosscutting source code concerns. IEEE Intl.
Conf. Soft. Maint., 103-112.

[34] Robillard, M., Coelho, W., and Murphy, G. (2004) How effective
developers investigate source code: An exploratory study. IEEE Trans.
Soft. Eng, 30(12), 889-903.

[35] Roehm, T., Tiarks, R., Koschke, R., and Maalej, W. (2012) How do
professional developers comprehend software? ACM/IEEE Intl. Conf. Soft.
Engr., 255-265.

[36] Sim, S. and Holt, R. (1998) The ramp-up problem in software projects: A
case study of how software immigrants naturalize., ACM/IEEE Intl. Conf.
on Soft. Engr., 361-370.

[37] Simon, H. (1972) Theories of bounded rationality. Decision and
Organization. 1(1), 161-176.

[38] Sillito, J., Murphy, G., and De Volder, K. (2006) Questions programmers
ask during software evolution tasks. ACM Intl. Symp. Found. of Soft.
Engr., 23-34.

[39] Soh, Z., Khomh, F., Gueheneuc, Y., Antoniol, G., and Adams, B. (2013)
On the effect of program exploration on maintenance tasks. Working Conf.
Reverse Engr., 391-400.

[40] von Mayrhauser, A., and Vans, A. (1996) Identification of dynamic
comprehension processes during large scale maintenance. IEEE Trans. on
Soft. Engr. 22(6), 424-437.

[41] Wang, J., Peng, X., Xing, Z., and Zhao, W. (2011) An exploratory study of
feature location process: Distinct phases, recurring patterns, and elementary
actions. IEEE Intl. Conf. Soft. Maint., 213-222.

[42] Wang, S., Lo, D., and Lawall, J. (2014) Compositional vector space
models for improved bug localization. IEEE Intl. Conf. Soft. Maint. and
Evolution, 171-180.

[43] Wong, C., Xiong, Y., Zhang, H., Hao, D., Zhang, L., and Mei, H. (2014)
Boosting bug-report-oriented fault localization with segmentation and
stack-trace analysis. IEEE Intl. Conf. Soft. Maint. and Evolution, 181-190.

[44] Xuan, J., and Monperrus, M. (2014) Learning to combine multiple ranking
metrics for fault localization. IEEE Intl. Conf. Soft. Maint. and Evolution,
191-200.

[45] Xuan, Q., Okano, A., Devanbu, P., and Filkov, V. (2014) Focus-shifting
patterns of OSS developers and their congruence with call graphs. ACM
Intl. Symp. Found. of Soft. Engr., 401-412.

[46] Ying, A., and Robillard, M. (2011) The influence of the task on
programmer behaviour. IEEE Intl. Conf. Prog. Comprehension, 31-40.

